
Graphical models in Constraint Logic Programming

Nicos Angelopoulos

nicos@cs.york.ac.uk

http://www.cs.york.ac.uk/~nicos

Department of Computer Science University of York

talk structure

- Logic Programming
- Uncertainty
- Constraints
- Graphical Models integration
- Example
- Interfacing

Used in AI for crisp problem solving and for building executable models.

Programs are formed from logic based rules.

member(H, [H|T]). member(EI, [H|T]) :- member(EI, T).

execution tree

?- member(X, [a,b,c]).

member(H, [H|T]). member(El, [H|T]) :- member(El, T). uncertainty in logic programming

Most approaches use Probability Theory but there are fundamental questions unresolved.

In general,

0.5 : member(H, [H|T]). 0.5 : member(EI, [H|T]) :- member(EI, T).

stochastic tree

?- member(X, [a,b,c]). 1/2: X = a 1/4: X = b1/8 X = c

0.5 : member(H, [H|T]). 0.5 : member(EI, [H|T]) :- member(EI, T).

constraints in lp

Logic Programming :

- execution model is inflexible, and
- its relational nature discourages use of state information.

constraints in lp

Logic Programming :

- execution model is inflexible, and
- its relational nature discourages use of state information.

Constraints add

- specialised algorithms

constraints in lp

Logic Programming :

- execution model is inflexible, and
- its relational nature discourages use of state information.

Constraints add

- specialised algorithms
- state information

constraint store

Logic Programming engine

Constraint store interaction

constraints inference

finite domain distributions

For discrete graphical models: extend the idea of finite domains to admit distributions.

from $X \text{ in } \{a, b\} \qquad (\text{i.e. } X = a \quad \text{or} \quad X = b)$ to

$$p(X = a) + p(X = b)$$

finite domain distributions

For discrete graphical models: extend the idea of finite domains to admit distributions.

from $X \text{ in } \{a, b\} \qquad (\text{i.e. } X = a \quad \text{or} \quad X = b)$ to

$$[p(X = a) + p(X = b)] = 1$$

Execution, assembles the graphical model in the store according to program and query.

Existing algorithms can be used for probabilistic inference on the model present in the store.

A B C

	A = y	A = n	
B = y	0.80	0.10	С
B = n	0.20	0.90	C

	A = y	A = n
C = y	0.60	0.90
C = n	0.40	0.10

?- example_bn(X,Y,Z),
evidence(X,[(y,0.8),(n,0.2)],
Za is p(Z = a).

?- example_bn(X,Y,Z),
evidence(X,[(y,0.8),(n,0.2)],
Za is p(Z = y).

Za = 0.66

interactions

Software properties:

- implementation of algorithms in literature
- open-source
- standarised data structures
- API
- session management and communication
- well characterised computational behaviour
- ... documentation