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probabilistic finite domains

For discrete graphical models: extend the idea of finite
domains to admit distributions.

from
X in {a, b} (i.e. X = a or X = b)

to

[p(X = a) + p(X = b)] = 1
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clp(pfd(Y)) framework

For finite domain variable V in {v1, . . . , vn}

and specific probabilistic inference algorithm Y ,
clp(pfd(Y)) computes

ψS(V ) = {(v1, π1), (v2, π2), . . . , (vn, πn)}
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clp(pfd(Y)) framework

Ei the probabilistic variables in E,
e vector, one element from each variable
PS(Ei = ei) = πi

E/e predicate E, variables replaced by e.

PS(E) = P (E | P ∪ S) =
∑

∀e
P∪S⊢E/e

PS(E/e)

=
∑

∀e
P∪S⊢E/e

∏

i

PS(Ei = ei)
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Graphical Models integration

Execution, assembles the graphical model in the store
according to program and query.

Existing algorithms can be used for probabilistic inference
on the model present in the store.

Similarities in constraint propagation and probability
propagation algorithms suggest interleaving algorithms
maybe possible.
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clp(pfd(Y)) example

For example, for program P1:
lucky( iv, hd). lucky( v, hd). lucky( vi, hd).

store S1 with variables D and C, with
ψS1

(D) = {(i, 1/6), (ii, 1/6), (iii, 1/6),
(iv, 1/6), (v, 1/6), (vi, 1/6)}

ψS1
(C) = {(hd, 1/2), (tl, 1/2)}.

The probability of a lucky combination is
PS1

(lucky(D,C)) = 1/4.
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clp(pfd(bn)) example

A

CB

A = y A = n
B = y 0.80 0.10

B = n 0.20 0.90

A = y A = n

C = y 0.60 0.90

C = n 0.40 0.10

cp03 poster – p.7



clp(pfd(bn)) program

example_bn( A, B, C ) :-
cpt(A,[],[y,n]),
cpt(B,[A],[(y,y,0.8),(y,n,0.2),

(n,y,0.1),(n,n,0.9)]),
cpt(C,[A],[(y,y,0.6),(y,n,0.4),

(n,y,0.9),(n,n,0.1)]).
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clp(pfd(bn)) query

?- example_bn(X,Y,Z),
evidence(X,[(y,0.8),(n,0.2)],
Zy is p(Z = y).

Zy = 0.66
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clp(pfd(c))

Probabilistic variables are declared with

V ∼ φV (Fd,Args)

Probability ascribing function φV and finite domain Fd are
kept separately.

Variable example

Heat ∼ finite_geometric([l,m, h], [2])

finite geometric distribution with deterioration factor is 2.
In the absence of other information

ψ∅(Heat) = {(l, 4/7)(m, 2/7), (h, 1/7)} cp03 poster – p.11



clp(pfd(c)) conditionals

Conditional C

D1 : π1 ⊕ . . .⊕Dm : πm Q

Each Di is a predicate and all should share a single
probabilistic variable V . Q is a predicate not containing V ,
and

0 ≤ πi ≤ 1,
∑

i

πi = 1

V ’s distribution is altered as a result of C being added to
the store.
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clp(pfd(c)) subspaces

C partitions the space to weighted subspaces within
which different events hold. Inference uses these
partitions and the application of functions to compute
updated probability distributions for the conditioned
variables.

cp03 poster – p.13



clp(pfd(Y)) Caesar’s encodings

To illustrate benefits from the additional information in
clp(pfd(Y)) when compared to clp(fd) we juxtapose
performances of respective programs for a simple Caesar
encoding scheme. The two programs are identical bar: (i)
distribution over domains in clp(pfd(c)) based on the
formula

| freq(Ei) − freq(Di) |∑
k | freq(Ei) − freq(Dk) |

and (ii) labelling in clp(pfd(c)) uses a best-first algorithm.
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clp(pfd(Y)) vs. clp(fd) time comparison
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http://www.doc.ic.ac.uk/˜ nicos/sware/pfds
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