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three prisoners, (Mosteller, 1965)

Grünwald and Halpern (2003):

Of three prisoners a, b, and c, two are to be
executed, but a does not know which. Thus, a
thinks that the probability that i will be executed is
2/3 for i ∈ {a, b, c}. He says to the jailer, "Since
either b or c is certainly going to be executed, you
will give me no information about my own chances
if you give the name of one man, either b or c, who
is going to be executed." But then, no matter what
the jailer says, naive conditioning leads a to
believe that his chance of execution went down
from 2/3 to 1/2.
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probabilistic spaces

Unconditional space W = {wa, wb, wc}

Observations O = {ob, oc}

Naive space NOb = {wa, wc}

NOc = {wa, wb}

Sophisticated space
SOb = {(wa, ob), (wc, ob)}

SOc = {(wa, oc), (wb, oc)}
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Graph representation
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For O = ob:
On naive space compute P (W = wa) = 1/3
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Asian 2004 – p.5



Graph representation
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For O = ob:
On naive space compute P (W = wa) = 1/3

1/3+1/3

On sophisticated compute P (W = wa|O = ob) = 1/6

1/6+1/3
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logic programming

Used in AI for crisp problem solving and for building
executable models and intelligent systems.

Programs are formed from logic based rules.

member( H, [H|T] ).
member( El, [H|T] ) :- member( El, T ).
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execution tree

?− member( X, [a,b,c] ).

X = a

X = b

X = c

member( H, [H|T] ).

member( El, [H|T] ) :- member( El, T ).
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uncertainty in logic programming

Most approaches use Probability Theory but there are
fundamental questions unresolved.

In general,

0.5 : member( H, [H|T] ).

0.5 : member( El, [H|T] ) :- member( El, T ).
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stochastic tree

?− member( X, [a,b,c] ).

1/4 : X = b

1/2

1/2

1/2

1/2

1/2

1/2 : X = a

1/8 : X = c

0.5 : member( H, [H|T] ).

0.5 : member( El, [H|T] ) :- member( El, T ).
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constraints in lp

Logic Programming :

execution model is inflexible, and

its relational nature discourages use of state
information.
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constraints in lp

Logic Programming :

execution model is inflexible, and

its relational nature discourages use of state
information.

Constraints add

specialised algorithms

state information
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constraint store

X # Y

Constraint store interaction

Logic Programming engine

?−  Q.
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constraints inference

?−  Q.

X in {a,b}

X = Y = b

Y in {b,c}

  => 

+
X = Y 
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finite domain distributions

For discrete probabilistic models clp(pfd(Y)) extends the
idea of finite domains to admit distributions.

from clp(fd)

X in {a, b} (i.e. X = a or X = b)

to clp(pfd(Y))

p(X = a) + p(X = b)
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finite domain distributions

For discrete probabilistic models clp(pfd(Y)) extends the
idea of finite domains to admit distributions.

from clp(fd)

X in {a, b} (i.e. X = a or X = b)

to clp(pfd(Y))

[ p(X = a) + p(X = b) ] = 1
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constraint based integration

Execution, assembles the probabilistic model in the store
according to program and query.

Dedicated algorithms can be used for probabilistic
inference on the model present in the store.

Asian 2004 – p.14



probability of predicates

pvars(E) - variables in predicate E,

e - vector of finite domain elements

p(ei) - probability of element ei

S - a constraint store.

E/e - E with variables replaced by e.

The probability of predicate E with respect to store S is

PS(E) =
∑

∀e
S⊢E/e

PS(e) =
∑

∀e
S⊢E/e

∏

i

p(ei)
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clp(pfd(Y))

is a generic framework for probabilistic inference in CLP.
For example if the store can infer distributions

Dice − [i : 1/6, ii : 1/6, iii : 1/6, iv : 1/6, v : 1/6, vi : 1/6]

Coin − [head : 1/2, tail : 1/2]

and program defines

lucky( iv, head ).
lucky( v, head ).
lucky( vi, head ).

P (lucky(Dice, Coin)) = 1/4
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clp(pfd(c))

Probabilistic variable definitions

Coin ∼ finite_geometric([h,m, l], 2)
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clp(pfd(c))

Probabilistic variable definitions

Coin ∼ finite_geometric([h,m, l], 2)

If store allows [h,m, l] for Coin then

Coin − [h : 4/7,m : 2/7, l : 1/7]
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clp(pfd(c))

Probabilistic variable definitions

Coin ∼ finite_geometric([h,m, l], 2)

If store allows [h,m, l] for Coin then

Coin − [h : 4/7,m : 2/7, l : 1/7]

If store allows [h, l] for Coin then

Coin − [h : 2/3, l : 1/3]
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pfd(c) example

p_of_lucky( P ) :-
Dice ∼ uniform([i, ii, iii, iv, v, vi]),
Coin ∼ uniform([head, tail]),
P is p( lucky(Dice, Coin) ).

? − p_of_lucky(LuckyP ).

LuckyP = 1/4
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conditional

Conditional constraint

D1 : π1 ⊕ . . . ⊕ Dm : πm Q
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conditional

Conditional constraint

D1 : π1 ⊕ . . . ⊕ Dm : πm Q

Conditional difference is a special case

Dependent π Qualifier

Dependent 6= V : π⊕Dependent = V : (1−π) Qualifier = V
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Variable elimination

Algorithm: Compute probability of event
Input: Query Q and store S. Output: PS(Q)
Initialise:

Construct dependency graph G for pvars(Q).

Find a topological ordering O of G.

Place pvars(Q) to B0. Place each Oi and dep(Oi) in Bi.

Iterate:

For i = n to 1
compute PS(Oi) according to (Eq1)
add PS(Oi) to each remaining bucket that mentions Oi

Compute:

updated PS(Q) based on probabilities of pvars(Q) in B0
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graph operation of algorithm

? − p(f(V )).

K Y W

V

L X Z
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graph operation of algorithm

? − p(f(V )).

K Y W

V

L X Z

A valid ordering: {W,Z, Y,X, V }
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graph operation of algorithm

? − p(f(V )).

K Y |W

V
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graph operation of algorithm

? − p(f(V )).

K Y |W

V

L X|Z

A valid ordering: {W,Z, Y,X, V }
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graph operation of algorithm

? − p(f(V )).

V |Y,X,W,Z
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three prisoners model

tp( Obs,AWins ) : −

W ∼ uniform([a, b, c]),

O ∼ uniform([b, c]),

O W,

AWins is p( a = W |O = Obs ) .
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three prisoners computation

P (W = wa|O = Obs) = P (W = wa, O = Obs)/P (O = Obs)

ob

wa oc

W wb oc

wc ob

1/3

1/3

1/3

1/2

1/2

1

1

P (W = wa|O = ob) = P (W = wa, O = ob)/P (O = ob)
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three prisoners computation

P (W = wa|O = Obs) = P (W = wa, O = Obs)/P (O = Obs)

ob
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P (W = wa|O = ob) = P (W = wa, O = ob)/P (O = ob)=
1

6
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1
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bottom line

Constraint LP based techniques can be used for
frameworks that support probabilistic problem solving.

clp(pfd(Y)) can be used to take advantage of probabilistic
information at an abstract level.
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