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overview

▶ Stream 1. prior knowledge for Bayesian machine learning
▶ Stream 2. applied knowledge representation for biological

big data analytics
▶ Stream 3. Bayesian networks for cancer and biological

datasets
▶ Stream 4. single cell RNA for pig immunity



Stream 1. (York) Bayesian machine learning

How
can we incorporate existing (biological) knowledge

in the analysis of new experimental data

Bayesian
methods allow for the incorporation of prior

knowledge and expectations, although often applications use
agnostic priors



Bayesian machine learning theory

Bayes’ Theorem

p(M |D) =
p(D |M)p(M)∑
M p(D |M)p(M)

Metropolis-Hastings

α(Mi ,M∗) = min

{
q(M∗,Mi)P (D |M∗)P (M∗)
q(Mi ,M∗)P (D |Mi)P (Mi)

,1
}



Stream 1. (York) Bims

A probabilistic programming framework for Bayesian machine
learning of structured statistical models (classification trees
and Bayesian networks).

Allows the encoding of prior information in the form of a
probabilistic logic program.

▶ Theory (York, 2000-5, KR paper 2017)
▶ Applications (Edinburgh, 2006-8, IAH 2009, NKI 2013)



Learning binding molecules

Edinburgh: Pyruvate kinase interactors improve chances of
discovering binding molecules based on examples from
screened library of chemicals

pyruvate kinase affinity data
582 Active and 582 Inactive, with 1100 property descriptors
for each molecule. Compared to Feed Forward NNs and SVMs.



best likelihood model



ten-fold validation

Sensitivity =
T +

T + +F−
Specif icity =

T −

T − +F+



Stream 2. (Imperial) Knowledge-based data analytics

tkSilac: tyrosine kinase screen
▶ MCF7 cell line
▶ 33 SILAC runs
▶ 65/66 expressed tyrosine kinases

▶ 4739 proteins quantified in some experiment
▶ 1000 proteins quantified in 60 or more TK KO

Molecular and Cellular Proteomics (MCP) 2015



Tyrosine kinase screen (Imperial)
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Fig. 2. Heatmap of quantified proteins after TK silencing. The overall pattern of regulation is shown in the heat-
map of quantified values. After normalized to siControl, values of fold changes are all above 0, with value 1 show-
ing that the expression levels of the specific protein are not altered after silencing TKs. For each knockdown (rows) 
the quantified value for an identified protein is plotted in red for down regulated proteins (below 1), white for 
non-differential and non-identified and blue for up-regulated proteins (above 1). The row labels indicate the knock 
out experiment and the colors correspond to the clusters described below.
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Fig. 4. Hierarchical clustering of the 65 TKs expressed in MCF7 cells. A, Hierarchical clustering of the 65 TKs 
was performed using R's hclust function. The complete linkage method which aims to identify similar clusters 
based on overall cluster measure was used. 10 distinctive clusters were obtained and the complete dendrogram is 
shown with the labels colored for these clusters. B, Full list of the TKs included in each cluster . The color coding 
of the clusters is used throughout to identify the analysis relevant to the corresponding clusters. C, Heatmap of the 
proteomic quantifications (log2 values of normalized fold changes against control) for the downstream effects 
(significantly up- or down-regulated proteins, Significant B test p< 0.05) after silencing TKs in cluster 1. D, 
Number of proteins significantly up or down-regulated in each identified cluster. x-axis shows 10 different clusters 
and y-axis indicates the counts.
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Fig. 6. Representatives of defined functional networks in each classified TK cluster. The functional networks 
were generated using GO analysis combined with the STRING platform. Proteins in lighter color are up-regulated, 
whereas brighter color indicates down-regulation. Arrows show the interactions between connected proteins. Rep-
resentative defined functional networks associated with their clusters are shown here. The color coding and the 
number for each cluster are indicated as above.



herceptin resistance (BT474HR) — ATG9A /
autophagy
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proteomics data analytics (Imperial)

tyrosine kinase screen
Molecular and Cellular Proteomics (MCP) 2015

KSR1:
Breast Cancer Res. and Treat., 2015

ATG9A:
Oncotarget 2016

Prolog libraries1:
Real (> 580), proSQLite (> 840), bio_analytics

bio_db (currently: 91 tables, 55 M records
on human, mouse, chicken)

1work started at NKI



Stream 3. (Sanger) Bayesian networks in cancer
genomics

X.label
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MPN: myeloproliferative neoplasms

New England Journal of Medicine, October 2018



myeloma structural variations
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del13q14

HDR

t_4_14

delCYLD

t_11_14

del17p13 NRAS gain1q21

TP53 delFAM46C

delTRAF3DIS3

KRAS
# events (shown med=225,max=643)
Co-occur (shown odds=4)
Mut.excl (shown odds=0.25)
Fisher test odds

Nature Communications, August 2019



BNs in cancer genomics

▶ MPN published in New England J. of Medicine, Oct, 2018
▶ multiple myeloma: in Nature Communications (3rd

author), Aug, 2019
▶ colorectal: January 2020

(with Dutch collaborators - J. of Clin. Oncology)
▶ 1st author methods paper:

Communications Biology (April 2022)



Renal carcinoma, Bayesian estimate

which early intervention could prevent renal cell carcinomas. We

used our Bayesian model to simulate the age-incidence curves

of sporadic clear cell renal cell carcinoma if the number of cells

carrying 3p loss were reduced (Figures 7E–7G). This suggests

that we could halve the incidence of sporadic clear cell renal

cell carcinoma within the normal human lifespan by reducing

the 3p-LOH clone size by 50% (Figure 7F) and have even more

profound benefits with more cell kill (Figure 7G).

One of the reasons that this could be such an interesting pre-

ventative opportunity is that the region of 3p loss invariably en-

compasses all four tumor suppressor genes of VHL, PBRM1,

BAP1, and SETD2, and hence spans at least 40 Mb. There are

A

B

E

H

F

C D

G

Figure 7. Mathematical Modeling of Clear Cell Renal Cell Carcinoma Evolution

(A) Schematic depicting how the age of incidence of renal cell carcinoma may be modeled as the sum of waiting times; Z1 representing the time to 3p loss, Z2

representing the time to VHL inactivation, and Z3 representing the time from bi-allelic loss of VHL to clinically detected tumor. Z1 and Z3 are modeled by gamma

distributions and Z2 by an exponential distribution of the product of n, the number of cells with 3p loss and m, the calculated VHL mutational rate.

(B–D) The posterior distribution of the waiting times for Z1 (B), the number of cells with 3p loss (C), and the waiting time for Z3 (D) with 95% posterior intervals.

(E–G) The effect on age-incidence curves for sporadic kidney cancer with reduction of the 3p loss clone size by 25 (E), 50 (F), and 75% (G), with 95% posterior

intervals shaded. (H) Location of genes with loss of function intolerance >90% (Lek et al., 2016) that lie within the region of ubiquitous loss in clear cell renal cell

carcinoma. The locations of the canonical clear cell tumor suppressor genes are annotated in blue below the x axis.

Cell 173, 611–623, April 19, 2018 619



Stream 4. single cell RNAseq (scRNA)

Ability to interrogate expression at a single cell level, but

. . . at major cost to depth



scRNA-seq pig mucosal immunity - all runs
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pig immunity - cell type identification
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mucosal immunity - scRNA clusters and cells



bottom line - scRNA

generate rich datasets

some loss of depth

some good tools exist
but it is not as straight forward as just applying an R

package

truly multi-disciplinary: interactions are necessary

truly multi-disciplinary: appreciation lacking



scientific vision of computational biology

▶ work in close collaboration with experimental and clinical
groups

▶ get involved early in the formulation of scientific question
▶ iterative, refining process, (forming a common language)
▶ properly resource analysis and computational tasks
▶ data management life cycle
▶ policies on data and analytics
▶ harmonious development and use of resources
▶ simple and robust solutions



Thank you


