
Sampling and probabilistic inference in
D/Slps.

Nicos Angelopoulos

The Pirbright Institute
head of computational biology

https://www.pirbright.ac.uk/users/dr-nicos-angelopoulos

nicos.angelopoulos@pirbright.ac.uk

23.07.09

https://www.pirbright.ac.uk/users/dr-nicos-angelopoulos
nicos.angelopoulos@pirbright.ac.uk

overview

▶ Introduction to Stochastic LP (SLP)
and Distributional LP (DLP)

▶ Syntax

▶ Probabilistic inference and Sampling

▶ Relative expressivity

Background

SLPs - fixed arithmetic labels on clauses that act as probability.
Failure adjusted maximisation (FAM) algorithm learns the
labels from data.

DLPs - extension of SLPs, labels on clauses are computed at run
time and can depend on ground arguments of goal. Have been
used go define priors to affect Bayesian machine learning of
model structures.

Implementations

Pepl Parameter Estimation in Prolog.

Bims Bayesian inference of model structure

Both implementations use similar techniques but different data
structures and specifics.

Native Prolog implementations

The extended syntax is transformed to standard Prolog with
extra arguments and run time code is injected in memory to
guide SLD as to affect probabilistic reasoning.

Extra arguments include the labels and returning information
such as the path and the status of success of a path.

Installation

SWI-Prolog

?− pack_install(pepl).
?− pack_install(bims).

https://swi-prolog.org/packs/list/{pepl,bims}

https://stoics.org.uk/~nicos/sware/packs/pepl/pepl-2.3.tgz

https://github.com/nicos.angelopoulos/{pepl,bims}

Current versions published recently and include the features
described in this paper:

Pepl v2.3

Bims v3

https://swi-prolog.org/packs/list/{pepl,bims}
https://stoics.org.uk/~nicos/sware/packs/pepl/pepl-2.3.tgz
https://github.com/nicos.angelopoulos/{pepl,bims}

Syntax - common part

Programs for coin/1 and doubles/1.

Syntax for both Slp and Dlp are identical for these examples.

0.5 :: coin(head).
0.5 :: coin(tail).

1 :: doubles(Side) :−
coin(Side),
coin(Side).

Syntax - Dlp only

Selecting an element uniformly from a list

:− pvars(umember(L,_E), [Len−length(L,Len)]).

1/X :: X :: umember([H|_T], H).
(1 − 1/X) :: X :: umember([_H|T], El) :−

[X − 1] :: umember(T, El).

pvars/2, allows the definition of probabilistic guards, that will
connect the length of input list at run time defines label X.

Note that the program above is economical in that the recursive step passes
the X − 1 as the length of the list so it doesn’t have to be re-calculated.

Probabilistic inference and Sampling

Standard Prolog uses SLD (selective linear definite clause)
resolution to refute queries (goals) against a logic program
containing clauses.

With probabilistic clauses we can

1. each refutation has an associated probability value
assigned to it, which is simply the product of probability
labels of the clauses used in the refutation. Furthermore,
any specific instantiation will have a total probability
ascribed to it, which the sum of the products for all the
refutation that derive it. (Probabilistic Inference)

2. Selective Stochastic Definite clause resolution (SSD): At
each resolution step, choose which one to select from all
matching clauses, in proportion to the relative value of the
probabilistic labels. (Stochastic Sampling).

pepl - probabilistic inference

?− sload_pe(coin).
?− scall(coin(Flip),Prb).
Flip =head,
Prb =0.5 ;
Flip = tail,
Prb =0.5.

A probabilistically "well" behaved program/query combination
as sum of all derivation of coin(Flip) are equal to 1 (ie no loss of
probability mass).

0.5 :: coin(head).
0.5 :: coin(tail).

pepl - probabilistic inference - scall/5

scall(+Goal, +Eps, −Path, −Succ, −Prb).

Goal input query goal
Eps ϵ cut-off
Path indices of clauses used in path
Succ unbound if success, or fail otherwise.
Prb probability of path

pepl - probabilistic inference - sum over refutations

?− scall_sum(doubles(head), Prb).
Prb =0.25.
?− scall_sum(doubles(tail), Prb).
Prb =0.25.
?− scall_sum(doubles(Side), Prb).
Prb =0.5.

This query succeeds iff two consequtive coin/1 tosses turn out
the same result.

Unlike the previous example, here we have a probability mass
loss of 0.5.

1 :: doubles(Side) :−
coin(Side),
coin(Side).

bims- probabilistic inference
?− dlp_call(doubles(Side)).
Side =head ;
Side = tail ;
false.

?− dlp_call(doubles(Side),Path,Prb).
Side =head,
Path =[3:1, 1/0.5, 1:0.5], Prb =0.25 ;
Side = tail,
Path =[3:1, 2/0.5, 2:0.5], Prb =0.25 ;
false.

?− dlp_call_sum(doubles(Side),Sum).
Sum =0.5.
?− dlp_call_sum(doubles(head),Sum).
Sum =0.25.

pepl- sampling
?− seed_pe. % sets the random seed
?− sample(coin(tail),0,Path,Succ,Prb).
Path =[1],
Succ = fail,
Prb =0.5.

?− seed_pe.
?− sample(coin(head),0,Path,Succ,Prb).
Path =[1],
Prb =0.5

?− seed_pe.
?− sample(coin(Flip),0,Path,Succ,Prb).
Flip =head,
Path =[1],
Prb =0.5.

bims- sampling

?− dlp_seed.

?− dlp_sample(doubles(Side)).
Side = tail.

?− dlp_sample(doubles(Side)).
Side = tail.

?− dlp_sample(doubles(Side)).
Side =head.

sampling on variant length lists

Left, sampling 100 coin tosses with Pepl over Slps.

Right, sampling 100 coin tosses with Bims.

h
e
a
d

ta
il

0

10

20

30

40

50

h
e
a
d

ta
il

0

10

20

30

40

50

helper packs

?− lib(mlu), lib(real), lib(b_real)
?− seed_pe.
?− mlu_sample(sample(coin(Side)), 100, Side, Freqs),

Opts =[interface(barplot),outputs([svg]),las=2],
mlu_frequency_plot(Freqs, Opts).

Freqs =[head−53, tail−47].

Real Real a c-language interface to R

b_real bio predicates for Real

mlu machine learning utilities

Expressivity - SLP - member selection

1/3 :: member3(H, [H|T]).
2/3 :: member3(Elem, [_H|T]) :−

member3(Elem, T).

Slp program selecting uniformly from a 3 member list, but is
unable to work on arbitrary length inputs.

Slp- sampling member3/2

Left:

?− Opts =[interface(barplot),outputs(pdf),las=2],
mlu_sample(sample(member3(X,[a,b,c])), 1000, X, Freqs),
mlu_frequency_plot(Freqs, Opts).

Freqs =[a−340, b−240, c−147, fail−273].

Right:

mlu_sample(sample(member3(X,[a,b,c,d,e,f,g,h])),1000,X,Freqs)

a b c

fa
il

0

50

100

150

200

250

300

a b c d e f

fa
il g h

0

50

100

150

200

250

300

Dlp- sampling umember/2

?− List=[a,b,c,d,e,f,g,h],
mlu_sample(dlp_sample(umember(List,X)),1000,X,Freqs),
Opts =[interface(barplot),outputs(pdf)),las=2],
mlu_frequency_plot(Freqs, Opts).

Freqs =[a−130,b−122,c−133,d−126,e−120,f−105,g−145,h−119].

:− pvars(umember(L,_E), [Len−length(L,Len)]).

1/X :: X :: umember([H|_T], H).
(1 − 1/X) :: X :: umember([_H|T], El) :−

[X − 1] :: umember(T, El).

expressivity - plots comparison

Left, sampling 1000 draws for a single member from an eight
member list using Slp predicate member3/2.

Right, sampling 1000 draws for a single member from the same
list with Dlp predicate umember/2.

a b c d e f

fa
il g h

0

50

100

150

200

250

300

a b c d e f g h

0

20

40

60

80

100

120

140

bottom line

We have enhanced two PLP packs with facilities to do high
level sampling and probabilistic inference.

The ability to perform such tasks are both beneficial both to the
libraries but also enable researchers in probabilistic logic
programming to experiment with the two systems.

We demonstrated stochastic aspects emerging from sampling
across Slps and Dlps.

Strong emphasis on LP aspects as both packs are implemented
in Prolog and are easily installed via the SWI-Prolog pack
installer.

Any . . .

. . . questions ?

