
Exploring file based databases via an SQLite interface

Sander Canisius, Nicos Angelopoulos, and Lodewyk Wessels

Netherlands Cancer Institute, Amsterdam, Netherlands

{s.canisius,n.angelopoulos}@nki.nl

Abstract. We present a succinct yet powerful interface library to the SQLite

database system. The single file, serverless approach of SQLite along with the

natural integration of relational data within Prolog, render the library a useful ad-

dition to the existing database libraries in modern open-source engines. We detail

the architecture and predicates of the library and provide example deployment

scenarios. Finally, this paper discusses the strengths of the system and highlights

possible extensions.

1 Introduction

SQLite1[Allen and Owens, 2010] is a powerful, open source serverless database man-

agement system that requires no configuration as its databases are stored in a single file.

Ran from a lightweight operating system (OS) library executable, it can be deployed

in a number of scenarios where a traditional server-client database management system

(DBMS) is not possible, advisable or necessary. In the context of Prolog, SQLite can

provide a flexible transaction-based extension to the in-memory predicate storage. In

this paper we present the implementation of a Prolog library that uses the C-interface

to communicate with the SQLite OS library.

The relational nature of Prolog makes its co-habitation with relational database sys-

tems an attractive proposition. Not only databases can be viewed and used as external

persistent storage devices that store large predicates that do not fit in memory, but it

is also the case that Prolog is a natural choice when it comes to selecting an inference

engine for database systems. As a result, there is an extensive body of literature on a

variety of aspects of such integrations. We do not attempt a general overview of the

area, but we present some of the research that is most clearly connected to our work.

The ODBC library in SWI-Prolog [Wielemaker et al., 2012] is closely related to our

work since we have used the library as a blue print both for the C-interface code and for

the library’s predicates naming and argument conventions.

The field of integrating relational databases has a long tradition going back to the

early years of Prolog. For instance the pioneering work of Draxler [1991], although

based on writing out SQL rather than directly interrogating the database, provided ex-

tensive support for translating combinations of arbitrary Prolog and table-associated

predicates to optimised SQL queries. The code has reportedly, [Mungall, 2009], been

ported to a number of Prolog systems, while it has also be extended and adopted for the

ODBC library in the Blipkit software suite [Mungall, 2009]. Another approach which

1 http://www.sqlite.org/

targeted machine learning and tabling as well as importing tables as predicates is MY-

DDAS, [Costa and Rocha, 2008].

Our current contribution does not deal with the theoretical or extensional aspects of

integrating a database system to Prolog, in contrast, we concentrate on describing an

open-source modern library that can be used out-of-the-box with a zero configuration,

community supported database system. In doing so, we hope that the library will be a

useful tool for the logic programming community and provide a solid basis in which

researchers can contribute rather than having to reinvent the basic aspects of such inte-

gration.

The integration of flexible external database storage is crucial to the uptake of Pro-

log to new application and research areas which can assist with the up-keep of its de-

velopment and its user penetration. Two such application areas are bioinformatics and

web-servers. In the former, the ability to tap on to large data-sets is a central aspect

due to the deluge of data publicly available resulting from the ever-growing number

of high throughput technologies available to experimental biologists [for instance see

Szklarczyk et al., 2011]. Our effort, along with other recent libraries, [Angelopoulos

et al., 2012. In preparation.], takes a piece-meal approach into providing tools that

can increase the penetration of Prolog into bioinformatics. These act complementary

to more holistic approaches that provide a suite of programs within a single frame-

work [Mungall, 2009]. In web-server applications, single file databases can facilitate

scalable and effective interthread and back-end communication. Our library can en-

hance the excellent web facilities in modern open-source Prolog systems [Cabeza and

Hermenegildo, 2001, Wielemaker et al., 2008].

The remainder of the paper is organised as follows. Section 2 describes the work-

ings of the library. Section 3 presents some tests and possible applications, while the

concluding remarks are in Section 4.

2 Library specifics

Here we present the overall architecture of the system along with the specific details

of the three component architecture. Our library was developed on SWI 6.1.4 under a

Linux operating system. It is also expected to be working on the Yap 6.3.2 by means of

the C-interface emulation that has been also used in the porting other low-level libraries

[Angelopoulos et al., 2012. In preparation.]. We publish 2 the library as open source

and we encourage the porting to other Prolog engines as well as contributions from the

logic programming community to its further development. Installation and running are

extremely simple and only depend on the location of the OS SQLite library.

2.1 Overall architecture

Our library is composed of three main components. At the lower level, written in C,

the part that handles opening, closing and communicating with the SQLite OS library.

The C code is modelled after, and borrows crucial parts from the ODBC library of SWI.

2 http://bioinformatics.nki.nl/˜nicos/sware

predicate name and arity moded arguments

sqlite connect/2 +File, ?Conn

sqlite connect/3 +File, ?Conn, +Opts

sqlite disconnect/1 +Conn

sqlite current connection/1 -Conn

sqlite default connection/1 -Conn

sqlite query/2 +SQL, -Row

sqlite query/3 +Conn, +SQL, -Row

sqlite format query/3 +Conn, +SQL, -Row

sqlite current table/2 +Conn, -Row

sqlite table column/3 +Conn, ?Table, -Column

sqlite table count/3 +Conn, +Table, -Count

Table 1. Predicates table for Sqlite library. Top part: core functionality of the library, pertain-

ing connection management and basic SQL query communication. Bottom section: auxiliary

predicates on formatted querries and database introspection. There are no explicit predicates for

importing tables, this is done wholesale for a database via a predicate option when a connection

is initiated.

On top of the low-level interface, sit two layers that ease the communication with the

database. On the one hand, a set of predicates allow the interrogation of the database

dictionary, while the third layer allows the integration and interaction with tables as

Prolog predicates.

2.2 Low-level interface

The heart of the library is its interface to SQLite. This is implemented in C and has

strong affinity to the ODBC layer in SWI. The top part of Table 1 lists the interface

predicates to the core system. The basic opening and closing operations are imple-

mented as :

sqlite_connect(+File, ?Conn)

sqlite_disconnect(+Conn)

The C code creates a unique, opaque term to keep track of open connections. How-

ever, this is not particularly informative to the users/programmers. To circumvent this,

the library allows for aliases to connections that can act as mnemonic handles through

which connections are known to the user. To establish such an alias it is sufficient to give

a non variable, usually atomic, value to the connection variable of sqlite connect/2.

As a running example we will use the connection to a large but simple protein

database from Uniprot. It has two tables referenced on a single key and each having

286, 525 entries. Table 2 summarises the basic parameters of the database. Except if

otherwise mentioned, the examples in this papers assume that the database detailed in

Table 2 is open by :

sqlite_connect('uniprot.sqlite', uniprot)

table name population columns

secondary accessions 286525 secondary accession, primary accession

identifier mapping 286525 uniprot accession, identifier type, target identifier

Table 2. Structure of the database used as an example in the text.

To fine-tune details on the type of connection we wish to establish to the database

file, we introduce an options argument in sqlite connect/3 . As is common practice, this

is the last argument of the predicate. In addition to allowing a list of options from the

set of possible options we also allowed single term options as a matter of convenience.

The members of the recognised set are :

alias(Alias) An alternative way to register a connection alias. Note that in the

case where Conn is also non-variable Alias and Conn should be unifiable.

as predicates(AsPred) AsPred should be a Boolean value which when true

instructs the library to create hook predicates that map each sqlite table to a Pro-

log predicate. These are created in the AtMod module, and it is the user’s respon-

sibility to make sure each predicate is unique in this module. See Section 2.4.

at module(AtMod) Defines the module in which predicates should be defined

when AsPred is true. By default, when this option is not present, predicates

are defined in the user module.

exists(Exists) Exists should be a Boolean value. When this value is false

the library does not throw an error if the provided file does not exist. The default

value is true in which case an error is thrown if the SQLite file does not exist.

The user can interrogate all open connections and the existence of a specific connec-

tion via sqlite current connection/1. This predicate backtracks over all open connection

if it is queried with a variable as its argument. The library also maintains the notion of

a default connection which can be identified with sqlite default connection/1. This is

usually set to the last connection opened and it is particularly useful in the common

deployment scenario where a single connection is maintained.

The bulk of the traffic with SQLite is directed via sqlite query/2,3. The version with

arity 2 is simply a shortcut for applying the query on the default connection. The SQL

argument of the predicates is an atom of valid SQL syntax, which when applied to the

opened connection identified by Conn, results in rows that are returned one at the time

in the form of a row/n term structure.

2.3 SQL wrapping predicates

We include in the library a small number of predicates that assist user interaction with

databases. These include parametrised query strings, interrogating the database dictio-

nary and simple aggregate operations.

sqlite format query(Conn,SqlFormat,Row) Post a format style SQL query to SQLite

Connection and get row result in Row.

sqlite current table(Conn,Table) Enumerate all tables in the database or querywhether

a specific table is part of a database.
sqlite table column(Conn,Table,Column) This predicate holds for each triplet of Conn,

Table and Column such that the named table has the respective field (Column)

in the context of the given database.
sqlite table count(Conn,Table,Count) Count is the number of data rows in Table;

which is a table present in the database identified by Conn.

2.4 Tables as predicates

With the as predicates/1 option of sqlite connect/3 we can direct the library to create

linking predicates for each table in the database. That is a predicate is created for each

table in the underlying database. The predicates are created at module identified by

option at module/1. It is the responsibility of the user to ensure there are no name

clashes. Once thus declared, the table predicates behave as normal Prolog predicates.

The system makes simple transformations when filling the predicates with results from

the database. Currently, this is by mean of creating an SQL SELECT statements in

which the WHERE subclause is formed from the ground arguments of the corresponding

goal. For a table with name Name and columns that have a one-to-one correspondence

with the list of variables in Args, the library constructs and asserts a clause in the

Prolog database by using the following code :

Head =..[Name|Args],

Body = sqlite:sqlite_holds(Conn,Name,Arity,Columns,Args),

user:assert((Head :- Body)),

At runtime sqlite holds/5 ensures that the appropriate transformations take place and

the results are fed back to Prolog as expected. By using predicated tables the number of

rows for table secondary accessions/2 can be found with the following query :

?-

Opt = as_predicates(true),

sqlite_connect('uniprot.sqlite',uniprot,Opt),

findall(A, secondary_accessions(A,_), As),

length(As, Len).

As = ['A0A111', 'A0A112', 'A0A113', 'A0A131'|...]

Len = 286525.

Predicated tables only depend on SQL transformations and as such are not specific

to SQLite but can be easily ported to other interface libraries such as ODBC.

3 Applications

3.1 Bioinformatics

The last decades have witnessed a phenomenal increase in the amount of biological

knowledge that has been published and codified. This acceleration can be directly at-

tributed to the evolution of high throughput technologies such as genome wide expres-

sion assays, microscopy and deep sequencing.

One important way in which biological knowledge is codified is in the form of

databases and ontologies. These include protein-protein interaction (PPI) databases

such as STRING [Szklarczyk et al., 2011] and HPRD [Keshava Prasad et al., 2009]

and protein information databases such as the universal protein resource [Uniprot, The

UniProt Consortium, 2012]. STRING collates information about protein interactions

from a variety of sources. It currently contains information on 5, 214, 234 proteins from

1, 133 organisms and holds 224, 346, 017 interactions. HPRD holds human proteins

and interactions between them. Currently there are 39, 194 interactions in HPRD. The

Uniprot database includes a wide-ranging array of information on proteins. In this pa-

per we concentrated on the mapping abilities between naming conventions for proteins.

In the SQLite file we created from a recently downloaded dataset from Uniprotthere are

286, 525 gene identifier mappings.

Prolog is a powerful platform for bioinformatics research and analysis. Its ability

to query relational datasets and express recursive searches succinctly are of particular

interest to ontologies and databases tabulating millions of relations. One of the main

roadblocks hindering the use of Prolog in this research area is the lack of effective tools

that give access to the resources available. Databases form the basic layer of biolog-

ical knowledge available. The use of effective tools to connect databases in efficient,

resilient and integrative manners to the logic engine can assist in narrowing this gap.

3.2 Web-services

Engaging Prolog with the world wide web (WWW) in the role of a web-server has been

well advocated and served by supporting libraries [Cabeza and Hermenegildo, 2001,

Wielemaker et al., 2008]. Furthermore, there has been previous motivating work on

systems that realise Prolog servers that mediate the web-publication of material stored

in relational databases [Angelopoulos and Taylor, 2010].

The library presented here further facilitates the role of Prolog in this area. The main

benefits of SQLite in this context are :

persistence - Prolog based servers need persistent storage of data. It is conceivable

that such data can be realised as external files managed privately. However, the

facilities offered byDBMS along with the presented predicated tables lead naturally

to steadfast and scalable solutions.

threading - Web-servers are inherently multi-threaded and the ability to communi-

cate through a shared file-based database provides further plurality to interthread

communication methods.

ease of deployment - SQLite is arguably one of the easiest database back-ends to

install and maintain. It depends on a single OS library and created databases are

OS agnostic. In terms of the database it is thus trivial to migrate, move or upgrade

the server.

filestore - One of the main success stories for SQLite has been in providing application

specific filestore solutions. This fits well within a web-server setting where the

server is provided with a clean back-end for all interactions with the filestore.

4 Conclusions

We presented a stable and efficient library for integrating a file-based DBMS to modern

open-source Prolog engines. We have argued that Prolog is a powerful platform for data

analysis and computational research in bioinformatics and for the realisation of agile

web-servers that require minimal programming effort. Biological knowledge captured

in the growing list of databases can be efficiently reasoned with, within logic program-

ming. The library presented here facilitates such integrations in a straight forward, effi-

cient and zero-configuration fashion that can facilitate rapid prototyping, collaborative

coding and the development of reusable programs.

There are a number of possible extensions that can be envisaged on top of the pre-

sented library. These are not necessarily specific to this library but can also be of rele-

vance to similar approaches such as theODBC library of SWI. One possibility would be

to have a more refined model for imported predicates which will not necessarily import

all tables from a database. With regard to predicated tables, an integration with the work

of Draxler [1991] would improve performance on queries that can be mapped to SQL

join operations. Ideally, one would like this to be done behind the scenes, away from

any user intervention. Finally, it might be possible to integrate the ODBC and SQLite

libraries in one package within SWI, creating a powerful, common interface in which

user programs are largely agnostic to the back-end database system used.

The underlying development principles of our approach follows other recent de-

velopments [Angelopoulos et al., 2012. In preparation.]. The common aspect is that

although inspired from a specific application area, in both cases bioinformatics, the ap-

proaches produced stand-alone libraries that can be of use to a wider audience. This

approach complements projects that take a more integrative approach to program de-

velopment. In the case of bioinformatics such a suite is the Blipkit [Mungall, 2009].

5 Acknowledgements

We would like to thank Jan Wielemaker for discussions, feedback and for making the

ODBC library of the SWI-Prolog open source, on which our library is based. Also, we

are thankful to the anonymous reviewers who made valuable suggestions.

Bibliography

Grant Allen and Mike Owens. The Definitive Guide to SQLite. Apress, 2nd edition,

2010. ISBN 1-4302-3225-0.
Nicos Angelopoulos and Paul Taylor. An extensible web interface for databases and

its application to storing biochemical data. In WLPE ’10, Edinburgh, Scotland, July

2010. URL http://arxiv.org/pdf/1009.3771v1.

Nicos Angelopoulos, Vitor Santos Costa, Joao Azevedo, Rui Camacho, and Lodewyk

Wessels. Integrative statistics for logical reasoning, 2012. In preparation. URL

http://bioinformatics.nki.nl/˜nicos/sware/real/.
D. Cabeza and M. Hermenegildo. Distributed www programming using (ciao) prolog

and the pillow library. Theory and Practice of Logic Programming, 1(3):251–282,

May 2001.
J. Costa and R. Rocha. Global StoringMechanisms for Tabled Evaluation. In M. Garcia

de la Banda and E. Pontelli, editors, Proceedings of the 24th International Confer-

ence on Logic Programming, ICLP’2008, number 5366 in LNCS, pages 708–712,

Udine, Italy, December 2008. Springer-Verlag.
C. Draxler. Accessing Relational and Higher Databases Through Database Set Predi-

cates. PhD thesis, Zurich University, 1991.
T. S. Keshava Prasad, Renu Goel, Kumaran Kandasamy, Shivakumar Keerthikumar,

Sameer Kumar, Suresh Mathivanan, Deepthi Telikicherla, Rajesh Raju, Beema

Shafreen, Abhilash Venugopal, Lavanya Balakrishnan, Arivusudar Marimuthu, Su-

topa Banerjee, Devi S. Somanathan, Aimy Sebastian, Sandhya Rani, Somak Ray,

C. J. Harrys Kishore, Sashi Kanth, Mukhtar Ahmed, Manoj K. Kashyap, Riaz

Mohmood, Y. L. Ramachandra, V. Krishna, B. Abdul Rahiman, Sujatha Mo-

han, Prathibha Ranganathan, Subhashri Ramabadran, Raghothama Chaerkady, and

Akhilesh Pandey. Human protein reference database2009 update. Nucleic Acids

Research, 37(suppl 1):D767–D772, 2009.

Chris Mungall. Experiences using logic programming in bioinformatics. In Patri-

cia Hill and David Warren, editors, Logic Programming, 25th International Confer-

ence, ICLP 2009, volume 5649 of Lecture Notes in Computer Science, pages 1–21.

Springer, 2009.
Damian Szklarczyk, Andrea Franceschini, Michael Kuhn,Milan Simonovic, Alexander

Roth, Pablo Minguez, Tobias Doerks, Manuel Stark, Jean Muller, Peer Bork, Lars J.

Jensen, and Christian von Mering. The string database in 2011: functional interac-

tion networks of proteins, globally integrated and scored. Nucleic Acids Research,

39(suppl 1):D561–D568, 2011. doi: 10.1093/nar/gkq973. URL http://nar.

oxfordjournals.org/content/39/suppl_1/D561.abstract.

The UniProt Consortium. Reorganizing the protein space at the universal protein re-

source (uniprot). Nucleic Acids Res, 40:D71–D75, 2012.

Jan Wielemaker, Zhisheng Huang, and Lourens van der Meij. Swi-prolog and the web.

Theory and Practice of Logic Programming, 8(3):363–392, 2008.

Jan Wielemaker, Tom Schrijvers, Markus Triska, and Torbjörn Lager. SWI-Prolog.

Theory and Practice of Logic Programming, 12(1-2):67–96, 2012. ISSN 1471-0684.

