
proSQLite: Prolog file based databases via an SQLite

interface

Sander Canisius1, Nicos Angelopoulos1,2, and Lodewyk Wessels1,2

1 Bioinformatics and Statistics, Netherlands Cancer Institute, Amsterdam, Netherlands
2 The Netherlands Consortium for Systems Biology (NCSB)

{s.canisius,n.angelopoulos}@nki.nl

Abstract. We present a succinct yet powerful interface library to the SQLite

database system. The single file, server-less approach of SQLite along with the

natural integration of relational data within Prolog, render the library a useful ad-

dition to the existing database libraries in modern open-source engines. We detail

the architecture and predicates of the library and provide example deployment

scenarios. A simple bioinformatics example is presented throughout to illustrate

proSQLite’s main functions. Finally, this paper discusses the strengths of the sys-

tem and highlights possible extensions.

Keywords: databases, SQL, Prolog libraries, SQLite.

1 Introduction

SQLite [1] is a powerful, open source server-less database management system that re-

quires no configuration as its databases are stored in a single file. Ran from a lightweight

operating system (OS) library executable, it can be deployed in a number of scenarios

where a traditional server-client database management system (DBMS) is not possible,

advisable or necessary. This paper presents an implementation of a Prolog library that

uses the C-interface to communicate with the SQLite OS library.

The relational nature of Prolog makes its co-habitation with relational database sys-

tems an attractive proposition. Not only databases can be viewed and used as external

persistent storage devices that store large predicates that do not fit in memory, but it

is also the case that Prolog is a natural choice when it comes to selecting an inference

engine for database systems. The ODBC library in SWI-Prolog [18] is closely related

to our work since we have used the library as a blue print both for the C-interface code

and for the library’s predicates naming and argument conventions.

The field of integrating relational databases has a long tradition going back to the

early years of Prolog [8]. For instance the pioneering work of Draxler[7], although

based on writing out SQL rather than directly interrogating the database, provided ex-

tensive support for translating combinations of arbitrary Prolog and table-associated

predicates to optimised SQL queries. The code has been ported to a number of Pro-

log systems[13]. Another approach which targeted machine learning and tabling as well

as importing tables as predicates isMYDDAS, [5]. An earlyODBC interface forQuintus

predicate name/arity moded arguments predicate name/arity moded arguments

sqlite connect/2 +File, ?Conn

sqlite connect/3 +File, ?Conn, +Opts sqlite format query/3 +Conn, +SQL, -Row

sqlite disconnect/1 +Conn sqlite current table/2 +Conn, -Row

sqlite current connection/1 -Conn sqlite table column/3 +Conn, ?Table, -Column

sqlite default connection/1 -Conn sqlite table count/3 +Conn, +Table, -Count

sqlite query/2 +SQL, -Row

sqlite query/3 +Conn, +SQL, -Row

Table 1. Predicates for proSQLite library. Left: connection management and SQL queries. Right:

auxiliary predicates on formatted queries and database introspection.

Prolog was ProDBI [12]. Prolog has also been used to implement a database manage-

ment system based on the functional data model [10]. In this contribution we concen-

trate on describing an open-source modern library that can be used out-of-the-box with

a zero configuration, community supported database system. We hope that the library

will be a useful tool for the logic programming community and provide a solid basis

in which researchers can contribute rather than having to reinvent the basic aspects of

such integrations.

2 Library specifics

Here we present the overall architecture of the system along with the specific details

of the three component architecture. Our library was developed on SWI 6.1.4 under a

Linux operating system. It is also expected to be working on the Yap 6.3.2 [6] by means

of the C-interface emulation [16] that has been also used in the porting other low-level

libraries [2]. We publish3 the library as open source and we encourage the porting to

other Prolog engines as well as contributions from the logic programming community

to its further development. Deployment is extremely simple and only depend on the

location of the SQLite binary.

Our library is composed of three main components. At the lower level, written in C,

the part that handles opening, closing and communicating with the SQLite OS library.

The C code is modelled after, and borrows crucial parts from the ODBC library of SWI.

On top of the low-level interface, sit two layers that ease the communication with the

database. On the one hand, a set of predicates allow the interrogation of the database

dictionary, while a third layer associates tables to Prolog predicates.

The heart of the library is its interface to SQLite. This is implemented in C and has

strong affinity to the ODBC layer in SWI. The left part of Table 1 lists the interface

predicates to the core system. Management predicates allow users to open, close and

interrogate existence of connections to databases. The C code creates a unique, opaque

term to keep track of open connections. However, this is not particularly informative to

the users/programmers. More conveniently, the library allows for aliases to connections

that can act as mnemonic handles. As a running example we will use the connection

3 http://bioinformatics.nki.nl/˜nicos/sware

table name population columns

secondary accessions 286525 secondary accession, primary accession

identifier mapping 3044651 uniprot accession, identifier type, target identifier

Table 2. Structure of the uniport example database which stores protein identifier maps.

to a large but simple protein database4 from Uniprot. It has two tables referenced on a

single key and having 286, 525 and 3, 044, 651 entries. The single file SQLite database

is 184Mb in size. Table 2 summarises the basic parameters of the database

The type of connection we wish to establish to the database file is controlled by

sqlite connect/3 . The user can interrogate all open connections and the existence of a

specific connection via sqlite current connection/1. This predicate backtracks over all

open connection if it is queried with a variable as its argument. The bulk of the traffic

with SQLite is directed via sqlite query/2,3 through which data in tables can be added,

deleted and queried. We include in the library a small number of predicates that assist

user interaction with databases. These include parametrised query strings, interrogating

the database dictionary and simple aggregate operations.

The formatted query mechanism provides a means for parametrised queries. This

is useful for encoding common patterns of queries in an application. The function of

the rest of the wrapping predicates follows directly their naming. The information they

provide is gathered from the database dictionary which is managed by SQLite. For

illustration purposes and for comparison with alternative ways of obtaining the counts

of a table, we show in the code that follows how to use backtracking to obtain all tables

in the Uniprot database along with their populations.

?- sqlite_current_table(uniprot, Table),

time(sqlite_table_count(uniprot, Table, Count)),

write(Table:Count),nl,fail.

% 7 inferences,0.007 CPU in 0.007secs (99% CPU,1013 Lips)

secondary_accessions:286525

% 7 inferences,0.083 CPU in 0.083 secs (100% CPU,85 Lips)

identifier_mapping:3044651

2.1 Tables as predicates

With the as predicates/1 option of sqlite connect/3 we can direct the library to create

linking predicates for each table in the database. That is a predicate is created for each

table in the underlying database. The predicates are created at module identified by

option at module/1. It is the responsibility of the user to ensure there are no name

clashes. Once thus declared, the table predicates behave as normal Prolog predicates.

The system makes simple transformations when filling the predicates with results from

the database. Currently, this is by mean of creating an SQL SELECT statements in

4
http://bioinformatics..nki.nl/˜nicos/sware/prosqlite/uniprot.sqlite

which the WHERE sub-clause is formed from the ground arguments of the corresponding

goal. For a table with name Name and columns that have a one-to-one correspondence

with the list of variables in Args, and Module being the module provided at the

at module option of sqlite connect/3 . Predicates that correspond to database tables

interact as if defined by a number of facts: each table row corresponds to a fact assertion

to the Prolog database. To illustrate, we show the predicated goals for the two queries

from the preceding section. Times are shown from a run on a Linux dual-core 3.16GHz

desktop computer.

?- findall(S, secondary_accessions(S, 'P64943'), All).

All = ['A0A111', 'Q10706'].

?- sqlite_current_table(uniprot, Table),

findall(C,sqlite_table_column(uniprot,Table,C),Cs),

length(Cs, Arity), length(As, Arity),

Pred =.. [Table|As],

time((findall(1,Pred,Ones),

length(Ones,Count))),

write(Table:Count), nl, fail.

%286,560 inf,0.561 CPU in 0.575 secs(98% CPU,510692Lips)

secondary_accessions:286525

%3,044,689inf,10.486CPUin10.516secs(100%CPU,290360Lips)

identifier_mapping:3044651

Predicated tables only depend on SQL transformations and as such are not specific to

SQLite but can be easily ported to other interface libraries such as ODBC.

3 Applications

The last decades have witnessed a phenomenal increase in the amount of biological

knowledge that has been published and codified [9]. This acceleration can be directly

attributed to the evolution of high throughput technologies such as genome wide ex-

pression assays, microscopy and deep sequencing. One important way in which bio-

logical knowledge is codified is in the form of databases and ontologies. These include

protein-protein interaction databases such as STRING [14] and HPRD [11] and protein

information databases such as the universal protein resource Uniprot [15].

Prolog is a powerful platform for bioinformatics research and analysis. Its ability

to query relational datasets and express recursive searches succinctly are of particular

interest to ontologies and databases tabulating millions of relations. One of the main

roadblocks hindering the use of Prolog in this research area is the lack of effective tools

that give access to the resources available. Databases form the basic layer of biolog-

ical knowledge available. The use of effective tools to connect databases in efficient,

resilient and integrative manners to the logic engine can assist in narrowing this gap.

Currently, we use proSQLite as one of the possible caching mechanisms in pubGraph

a graph search tool that mines the citation relations from the PubMed5 website to built

visualisations of the relational networks.

Engaging Prolog with the world wide web (WWW) in the role of a web-server has

been well advocated and served by supporting libraries [4, 17]. Furthermore, there has

been previous motivating work on systems that realise Prolog servers that mediate the

web-publication of material stored in relational databases [3]. The library presented

here further facilitates the role of Prolog in this area. Particularly, with small to medium

size web services. The main benefits of SQLite in this context are:

persistence - Prolog based servers need persistent storage of data. It is conceivable

that such data can be realised as external files managed privately.

threading - Web-servers are inherently multi-threaded and the ability to communicate

through a shared file-based database provides further plurality.

ease of deployment - SQLite is arguably one of the easiest database back-ends to

install and maintain.

filestore abstraction - One of the main success stories for SQLite has been in providing

application specific filestore solutions. This fits well within a web-server setting.

Currently, a large number of applications are reported to be using SQLite as an

embedded database transaction system that is used to store application data in a uni-

form and robust manner. These include major open source projects such as the Fire-

fox/Mozilla6 browser and the Powerdns7 DNS server. The embedded nature of SQLite

reduces overheads and simplifies installation. Applications can use the layer to abstract

their interactions with the operating system. Databases are stored in single files and are

cross-platform compatible.

4 Conclusions

We presented a stable and efficient library for integrating a file-based DBMS to mod-

ern open-source Prolog engines. We have argued that Prolog is a powerful platform

for data analysis and computational research in bioinformatics and for the realisation

of agile web-servers that require minimal programming effort. Biological knowledge

captured in the growing list of databases can be efficiently reasoned with, within logic

programming. There are a number of possible extensions that can be envisaged on top

of the presented library. These are not necessarily specific to this library but can also

be of relevance to similar approaches such as the ODBC library of SWI. One such ex-

tension is db facts8 which implements term based table interactions for proSQLite and

ODBC databases. It also allows for a notation that selects columns from tables indepen-

dently of their position in the respective table. This would allow decoupling of a table’s

precise list of constituent columns from accessing specific fields, making code easier to

maintain as additions to the database structure do not need to be propagated to parts of

the code that are not accessing the new columns.

5
http://www.ncbi.nlm.nih.gov/pubmed

6
http://www.mozilla.org/

7
http://doc.powerdns.com/gsqlite.html

8 http://bioinformatics.nki.nl/˜nicos/sware/db_facts

Acknowledgements

We would like to thank Jan Wielemaker for discussions and for making the ODBC

library of the SWI-Prolog open source. Also we thank Graham Kemp for valuable com-

ments. This work was (co)financed by the Netherlands Consortium for Systems Biology

(NCSB) which is part of the Netherlands Genomics Initiative/Netherlands Organisation

for Scientific Research. SC and NA contributed equally.

References

1. G. Allen and M. Owens. The Definitive Guide to SQLite. 2010.

2. N. Angelopoulos, V. S. Costa, R. Camacho, J. Wielemaker, J. Azevedo, and Lodewyk Wes-

sels. Integrative statistics for logical reasoning, 2012. Conditional accept PADL’13.
3. N. Angelopoulos and P. Taylor. An extensible web interface for databases and its application

to storing biochemical data. InWLPE ’10, Edinburgh, Scotland, July 2010.
4. D. Cabeza and M. Hermenegildo. Distributed WWW programming using Ciao Prolog and

the PiLLoW library. Theory and Practice of Logic Programming, 1(3):251–282, May 2001.
5. J. Costa and R. Rocha. Global Storing Mechanisms for Tabled Evaluation. In Proc. of the

24th Int. Conf. on Logic Programming, ICLP’08, number 5366 in LNCS, pages 708–712,

Udine, Italy, 2008.
6. V. S. Costa, R. Rocha, and L. Damas. The YAP Prolog system. Journal of Theory and

Practice of Logic Programming, 12:5–34, 2012.
7. C. Draxler. Accessing Relational and Higher Databases Through Database Set Predicates.

PhD thesis, Zurich University, 1991.

8. P. M. D. Gray and R. J. Lucas, editors. Prolog and Databases, Implementations and New

Directions. Ellis Horwood Ltd, Chichester, U.K., 1988.

9. P.M.D. Gray, G.J.L. Kemp, C.J. Rawlings, N.P. Brown, C. Sander, J.M. Thornton, C.M.

Orengo, S.J. Wodak, and J. Richelle. Macromolecular structure information and databases.

Trends in Biochemical Sciences, 21:251–256, 1996.

10. G.J.L. Kemp, J.J. Iriarte, and P.M.D. Gray. Efficient Access to FDM Objects Stored in a

Relational Database. InDirections in Databases: Proceedings of the Twelfth British National

Conference on Databases, pages 170–186, 1994.
11. T. S. Keshava Prasad, Renu Goel, Kumaran Kandasamy, Shivakumar Keerthikumar, Sameer

Kumar, et al. Human protein reference database 2009 update. Nucleic Acids Research,

37(suppl 1):D767–D772, 2009.
12. R. Lucas and Keylink Computers Ltd. ProDBI: ODBC Interface for Quintus Prolog. Kenil-

worth, UK, Keylink Computers Ltd, 1997.
13. C. Mungall. Experiences using logic programming in bioinformatics. In Logic Program-

ming, 25th International Conference, ICLP 2009, pages 1–21. 2009.

14. D. Szklarczyk, A. Franceschini, M. Kuhn, M. Simonovic, A. Roth, P. Minguez, T. Doerks,

M. Stark, et al. The STRING database in 2011: functional interaction networks of proteins,

globally integrated and scored. Nucleic Acids Research, 39(suppl 1):D561–D568, 2011.
15. The UniProt Consortium. Reorganizing the protein space at the universal protein resource

(uniprot). Nucleic Acids Res, 40:D71–D75, 2012.

16. J. Wielemaker and Vı́tor S. C. On the portability of prolog applications. In Practical aspects

of Declarative Languages, pages 69–83, 2011.

17. J. Wielemaker, Z. Huang, and L. van der Meij. SWI-Prolog and the Web. Theory and

Practice of Logic Programming, 8(3):363–392, 2008.

18. J. Wielemaker, T. Schrijvers, M. Triska, and T. Lager. SWI-Prolog. Theory and Practice of

Logic Programming, 12(1-2):67–96, 2012.

