
Distributional Logic Programming: a brief overview

Nicos Angelopoulos
University of Edinburgh, Edinburgh, EH9 3JR, Scotland, UK

n.angelopoulos@ed.ac.uk

1 Introduction

Logic programming (LP) is an attractive formalism for representing crisp knowledge. Probabilistic
extensions to logic programming have been previously proposed for the purpose of representing
Bayesian priors ((Cussens, 2000; Angelopoulos & Cussens, 2001)). Here, we present an extension
to the probabilistic aspects of their formalism based on probabilistic guards. Current approaches to
logical-probabilistic formalisms include the (almost complete) replacement of non-determinism by
probabilistic operator, the use of a primitive that appearswithin limited non-determinism and a clear
separation of the two spaces. In the first category, SLPs under the semantics presented in (Cussens,
2000) replaces the SLD with sampling over pure programs, which only contain stochastic clauses.

An example of the second category is that of Prism, see for instance (Sato & Kameya, 2001). It
provides a single probabilistic construct that instantiates an unbound variable from the elements of
a list according to the probability values attached to each element. It was introduced with parameter
learning in the context of PCFGs and hidden Markov models in mind.

2 Syntax

We extend the clausal syntax of Logic Programming with probabilistic guards that associate a res-
olution step to a probability that can be computed on-the-fly. The main intuition is that in addition
to the logical relation a clause defines over the objects thatappear as arguments in its head, it can
also define a probability distribution over aspects of this relation. A Dlp probabilistic clause is an
extension of the definite clause and it is of the form:

Expr : GV ars ·Guard ∼ PV ars : Head :- Body (1)
Arithmetic expressions in the clause defined by (1) will be evaluated at resolution time to a prob-
ability value. In cases where this can be done successfully,the clauses will be used to define a
distribution over the probabilistic variables (PV ars). The distribution may depend on an arbitrary
number of input terms via calls to the guard. We also allow goals that appear in the body of clause
definitions to be labelled by a tuple of unary functions each wrapping an arithmetic expression. Each
of the unary functions corresponds to the functions inGV ars. The intuition behind labelled goals in
the body of clauses (Body) is that often probability labels of recursive calls can be easily computed
from their parent call thus the interpreter can avoid recomputing all or some of the guards. For a
single probabilistic predicate all clauses must define the same set of probabilistic variables. In what
follows we letC∼

i denote the set of probabilistic variables of clauseCi.

By comparison to the standard LPmember/2 relation, consider the predicatepmember/2:

(C3)
1

L
: l(L) · length([H|T], L), 0 < L ∼H:

pmember(H, [H|T]).
(C4) 1 − 1

L
: l(L) · length([H|T],L), 0 < L ∼El:

pmember(El, [H|T]) :-
l(L-1): pmember(El,T).

These clauses have attached to them expressions which will be computed at resolution time. (C3) is
labelled by1

L
whereL is the length of the input list. Similarly (C4) claims the residual probability.

1



The recursive call has been augmented to carry forward the value ofL as the length ofT is one less
than that of the input list and thus we avoid recomputing the guard. Intuitively, this program when
queried by? − pmember(X,List). for a concrete list it defines an equiprobable distribution over
selection among the elements of the list. The three corresponding probabilities whenList = [a, b, c]
are computed as1

3
, 2

3
× 1

2
, 1

3
× 1

2
× 1.

The full syntax is usually not necessary for simple predicate definition. Also, in the interest of clarity
guard lines can be introduced to the programs which factor the guard section out. The example
program thus becomes:

(G1) L ·length(List, L),0 < L ∼El : pmember(El,List).

(C′

3
) 1

L
: G1 : pmember(H, [H|T]).

(C′

4
) 1 − 1

L
: pmember(El, [H|T]) :-

L-1: pmember(El, T).

3 Example of a prior

(Chipman H, 1998) uses a prior over the set of classification treesT that depends on splitting indi-
vidual nodes:p(T ) = ψeη

= α(1 + eη)−β wheredη is the depth of nodeη andα andβ, are user
defined parameters controlling the size of the trees. The main part of the probabilistic program for
constructing trees according to the presented prior is as follows:

(A0) cart(D,Cart) : −
parameters(α, β), ψ0 is α,

ψ0: split(0, D,Cart).

(A1) ψH : split(EH , DH , c(F, V al, L,R)) : −

parameters(α, β), EH1
isEH + 1, ψH1

is α ∗ E−β
H1

,
r select(F, V al,DH, LH , RH),

ψH1
: split(EH1

, LH , L),
ψH1

: split(EH1
, RH , R).

(A2) 1 − ψD: split(D,DH, l(DH)). (A3) : parameters(α, β).

Clause (A0) definesCart to be a valid representation of a tree given dataD, and generated with
probability equal to that described above. For each split atdepthEH the leaf nodes are considered
in turn with a decision made for each of them as where to split the node or not. The node will
either become an internal one via (A1) or a leaf node by application of (A2). Each time a split
is considered (A1) is selected with probabilityψH and (A2) with the complementary probability
1 − ψH . The Dlp program captures the essence of the prior in an elegant and abstract way. (An-
gelopoulos & Cussens, 2005) has shown that such languages can be used for statistical inference
via Bayesian model averaging. The MCMCMS system (http://scibsfs.bch.ed.ac.uk/
˜nicos/sware/mcmcms ) supports both stochastic and distributional logic programs.

References

Angelopoulos, N., & Cussens, J. (2001). MCMC using tree-based priors on model structure. In17th
Uncertainty in AI (UAI-2001), pp. 16–23.

Angelopoulos, N., & Cussens, J. (2005). Exploiting Informative Priors for Bayesian Classification
and Regression Trees. In19th Int. Joint Conference on AIEdinburgh, UK.

Chipman H, George E, M. R. (1998). Bayesian CART Model Search(with discussion).Journal of
the American Statistical Association, 93, 935–960.

Cussens, J. (2000). Stochastic logic programs: Sampling, inference and applications. In16th Annual
Conference on Uncertainty in Artificial Intelligence (UAI-2000), pp. 115–122.

Sato, T., & Kameya, Y. (2001). Parameter Learning of Logic Programs for Symbolic-statistical
Modeling.Journal of AI Research, 15, 391–454.

2


