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Abstract. A general method for defining informative priors on statis-
tical models is presented and applied specifically to the space of classifi-
cation and regression trees. Our aim is towards a Bayesian approach to
learning such models from data, with the Metropolis-Hastings algorithm
used to sample from the posterior. We present some preliminary results
where we empirically tested the methodology.

1 Introduction

A key feature of the Bayesian approach to statistical inference is that prior
knowledge (i.e. information available prior to data) can be incorporated into the
learning process in a mathematically rigorous and conceptually clear manner. On
the assumption that a space of possible statistical models can be defined, prior
knowledge is expressed via a prior distribution over this space. This distribution
is then updated with the data using Bayes theorem to produce a posterior.

The Bayesian framework is compellingly simple, but there are many com-
plexities in applying it to real data analysis. Some of the complexities are being
progressively alleviated by increased computing power and the subsequent use
of Markov chain Monte Carlo (MCMC) techniques to sample from the poste-
rior. In this paper our existing Bayesian method for defining and using a very
flexible class of prior distributions over models is further developed and applied
specifically to classification and regression tree (C&RT) models.

The method is fully Bayesian using a version of the Metropolis-Hastings
MCMC algorithm which can sample from posterior distributions over the space
of all possible C&RT models. Even after eliminating a priori uninteresting trees
(for example, those containing sparsely populated leaves) this will be a very large
space. The key feature of our approach is that the user can apply whatever prior
knowledge s/he has available to restrict and/or bias the prior distribution over
this space. Also, in contrast with other Bayesian C&RT work, MCMC sampling
from the space is almost entirely driven by sampling from the prior.

2 Defining priors with stochastic logic programs

Our approach to defining priors is related to [1] and [2]. We specify a prior
distribution over a space of models with a stochastic program rather than by



some closed-form expression. A convenient language for defining such programs
is stochastic logic programming (SLP). A stochastic logic program (SLP) can be
used to define a prior over a space of statistical models by a two-step process.
Firstly, a logic program is written which defines the desired model space (i.e.
the hypothesis space). We define a unary predicate cart/1 in a logic program
such that each instantiation for X which makes cart(X) true is a term which
represents a C&RT in the hypothesis space. We can exploit the expressiveness
of first-order logic to represent C&RTs, choosing the most convenient logical
representation. At this point any C&RT models we wish to exclude from the
hypothesis space can be so excluded by adding the appropriate constraints to
the logic program. For example, the program:

cart(leaf).
cart(Split-[L,R]) :- choose_split(Split), cart(L), cart(R).
choose_split(x1). choose_split(x2). choose_split(x3).

defines the space of binary-splitting C&RT models where there are only three
binary attributes x1, x2 and x3. Since the xi are binary it suffices to supply the
variable to determine the splitting rule—assume that data for which xi = 0 go
down the left branch and data for which xi = 1 go down the right branch. To re-
strict the hypothesis space to have only trees where x1 is the top node it is enough
to define cart_foo(X) :- X = x1-[L,R], cart(X). and use cart foo/1 as
the predicate defining the hypothesis space. Secondly, probability labels are at-
tached to rules in the program thus converting it into an SLP. When the search
for proofs has to choose between rules, a rule is chosen probabilistically accord-
ing to the labels. In this paper, if a chosen rule does not lead to a proof, then
backtracking will try from amongst untried rules, renormalising the probabilities
as necessary. Now when the query :- cart(X). is asked, there is a distribution
over possible instantiations for X.

We have extended the representational power of SLPs so that probability
labels may be computed ‘on the fly’ rather than being fixed. For example, is an
SLP based on our example above, where the probability of growing a tree by
splitting a leaf depends on the depth of that leaf.

1 - 1/D :: [D] :: cart(leaf).
1/D :: [D] :: cart(Split-[L,R]) :- NewD is D+1, choose_split(Split),

[NewD] :: cart(L), [NewD] :: cart(R).
choose_split(x1). choose_split(x2). choose_split(x3).

3 Priors for Bayesian C&RT

A C&RT model T , maps an example described by a set of p predictor variables
X = X1, X2, . . . Xp to a distribution over a response variable Y . In the case of
classification trees Y is discrete and finite, and in the case of regression trees Y is
continuous. Each T defines a conditional probability distribution P (Y |T,X). For
the purposes of determining a posterior distribution over trees, this conditional



is a likelihood function derived by Bayes theorem: P (T |Y,X) = P (T |X)P (Y |T,X)
P (Y |X)

The key point is that the prior P (T |X) is conditional on the predictor variables,
thus we can use the observed values of X to help define sensible priors. This
allows us to rule out a priori trees with leaves which contain few examples.
Ruling out such trees is normal in this research area and greatly reduces the
size of the model space. In our experiments only trees whose leaves have at
least 5 examples are permitted. We use two types of priors over trees. The first,
the GROW prior, is essentially that used by [1]. The stochastic process defined
by this prior grows a C&RT tree by starting with a single leaf node and then
repeatedly splits each leaf node η with a probability α(1+dη)−β , where dη is the
depth of node η and α and β are prior parameters set by the user to control the
size of trees. If a node is split, the splitting rule for that split is chosen uniformly.
An abbreviated fragment of the SLP which expresses this prior is :

split_cart([H|T],Alpha/Beta) :- ...
Split is Alpha*exp((1+D),-Beta), %split prob
[Split] :: split_leaf(D,Ids,P,LV,RmLvPrs,NxLvPrs),
split_cart(NxLvPrs,Alpha/Beta).

split_cart([],_ABeta ).
Split :: [Split] :: split_leaf(D,Ids,[Hp|Tps],LV,LvPrs,NwLvPrs) :-

D1 is D + 1, ... %increase depth
branch(Rest,ChL,PL), branch(Rest,ChR,PR), ...

(1 - Split)::[Split]::split_leaf(D,Ids,P,[leaf(D,Ids,P)],Lvs,Lvs).

In the EDIT prior an ‘initial’ C&RT model is supplied. This can be any tree,
for example the tree produced by the standard greedy algorithm. This tree is
then probabilistically edited. Our approach is closely related to the proposal
mechanisms of [1–3]. Hopefully, the SLP fragment in Table 1 conveys the general
idea. With probability 4/5 the tree is edited with one of three equiprobable
editions: growing, pruning and changing a splitting rule.

4/5 :: edit(CartIn,CartOut) :- one_edit(CartIn,CartMid), edit(CartMid,CartOut).

1/5 :: edit(CartIn,CartOut) :- one_edit(CartIn,CartEdt),

edcart_to_concrete_cart(CartEdt,CartOut).

1/3 :: one_edit( CartIn, CartOut ) :- ... % grow by splitting a leaf

1/3 :: one_edit( CartIn, CartOut ) :- ... % prune by merging neighbours

1/3 :: one_edit( CartIn, CartOut ) :- ... % change a splitting rule

Table 1. EDIT prior defined with an SLP

4 Experiments

We have used the Metropolis-Hastings (MH) algorithm for running MCMC sim-
ulations. Our main algorithm is effectively that presented in [4]. In brief, leaves
in the stochastic SLD tree instantiate query variables to models. The MCMC
makes stochastic proposals of next model in the chain. The algorithm accepts
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Fig. 1. Log-likelihood trajectories using two different seeds (low values truncated).
Prior=GROW (β = 1), Data=BCW, MCMC=RN

this model with a stochastic choice which is influenced by the prior and the
likelihood of the current and proposed models (i.e. the relative fitness of the two
models for explaining the data). In our experiments we have used two datasets:
the Wisconsin breast cancer (BCW) and the Kyphosis (K). BCW was used by [1]
and it contains 16 missing data values the records of which were deleted. In both
cases the machine learning task is binary classification using integer predictors.
All splits are binary. There are 683 datapoints for BCW and 81 for K.

We have used the GROW prior with α = 0.95 and β ∈ {0.5, 1, 1.5} to give a
bias towards big, medium and small trees. Generally speaking, the results are as
expected: the method works but more work needs to be done in ensuring rapid
convergence of the chain to the posterior. We used Sicstus Prolog 3.11 running
under Linux. Running a chain for 60,000 iterations typically took 1-2 hours.

Comparison to greedy algorithm. The rpart (recursive partitioning) R
package implements a version of the standard greedy algorithm. By default, 10-
fold cross-validation is used to prune trees to avoid overfitting. The trees found
by rpart for BCW and K using default settings have log-likelihoods -97 and -39,
and sizes 7 and 5, respectively. By looking through the log of visited trees it is
easy to find ‘better’ trees for many of the combinations of prior and MH variant
that we use. For BCW we can find a tree with only 5 leaves and log-likelihood
of -86 and for K a tree with only 3 leaves and log-likelihood of -36.

Analysing convergence Fig 1 records the trajectories of the log-likelihood as
the MH algorithm moves through the space of trees. In both cases exactly the
same experimental parameters have been used, just the random seed has been
altered. We can see that although the distribution of log-likelihoods is similar in
both cases, it appears that the two chains have wandered into different areas of
tree space: the righthand trajectory has more plateaux and also reaches higher
log-likelihoods than the lefthand one.
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Fig. 2. Log-likelihood trajectories. In both cases: Data=BCW, MCMC=RN. For LHS:
Prior=EDIT. For RHS: Prior=GROW (β = 1)

Influence of a strong prior Fig 2 compares log-likelihood trajectories using
the EDIT prior and the GROW prior respectively with all other parameters being
equal. The distinct horizontal line in the EDIT trajectory is clear evidence that
the EDIT prior is pulling the Markov chain back to the initial tree.

5 Conclusions and future work

We have a working system (http://www.cs.york.ac.uk/~nicos/sware/slps)
which permits the user to express prior information about model structure by
writing an SLP. EDIT results show that prior information has the desired effect
of significantly altering the posterior (at least for the moderately sized datasets
used here). Our results, not just those presented, indicate that local jumps are
essential to adequately explore the posterior. However, it appears that propos-
als which are heavily biased towards local jumps (e.g. RN used for Fig 1) lead
to the chain getting stuck in local areas of tree space. Concerning actual im-
plementation of the chain, our current program does not use Prolog’s built-in
backtracking: if this were possible this would permit a significant speed-up. A
more radical approach is to adapt an existing Prolog system to have our proba-
bilistic mechanisms built-in. Tabling could also be used advantageously.
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