
Exploiting Informative Priors for Bayesian Classification and Regression Trees

Nicos Angelopoulos and James Cussens
Department of Computer Science

University of York
Heslington, York YO10 5DD, UK
{nicos,jc}@cs.york.ac.uk

Abstract

A general method for defining informative pri-
ors on statistical models is presented and applied
specifically to the space of classification and regres-
sion trees. A Bayesian approach to learning such
models from data is taken, with the Metropolis-
Hastings algorithm being used to approximately
sample from the posterior. By only using proposal
distributions closely tied to the prior, acceptance
probabilities are easily computable via marginal
likelihood ratios, whatever the prior used. Our ap-
proach is empirically tested by varying (i) the data,
(ii) the prior and (iii) the proposal distribution. A
comparison with related work is given.

1 Introduction
A key feature of the Bayesian approach to statistical inference
is that prior knowledge (i.e. relevant information distinct from
the data) can be incorporated into the learning process in a
mathematically rigorous and conceptually clear manner. On
the assumption that a space of possible statistical models can
be defined, prior knowledge is expressed via a prior distri-
bution over this space. This distribution is then updated with
the data using Bayes theorem to produce a posterior distribu-
tion. The posterior distribution is the end result of learning
and can then be used to make predictions about future data
or, once suitably summarised, to give the data analyst insight
into the domain of interest.

The Bayesian framework is compellingly simple, but there
are many complexities in applying it to real data analysis.
Many of these difficulties are computational. For example,
in high-dimensional spaces the posterior will be too complex
to report directly so features of the distribution (e.g. mean and
variance) must be extracted—requiring, in general, a difficult
integration. These problems are being progressively allevi-
ated by increased computing power and the subsequent use of
Markov chain Monte Carlo (MCMC) techniques to approxi-
mately sample from the posterior.

In this paper an existing Bayesian method for defining and
using a very flexible class of prior distributions over models
is further developed and applied specifically to classification
and regression tree (C&RT) models. C&RT models are so
well known in machine learning (and increasingly statistics)

that this paper assumes familiarity with the basic properties
of these models.

The method is fully Bayesian using a version of the
Metropolis-Hastings MCMC algorithm to approximately
sample from posterior distributions over the space of all pos-
sible C&RT models. Even after eliminating a priori unin-
teresting trees (for example, those containing sparsely popu-
lated leaves) this will be a very large space. The key feature
of our approach is that the user can declare structural prior
knowledge to restrict and/or bias the prior distribution over
this space.

The rest of the paper is structured as follows. Section 2
describes our language for defining priors. Section 3 de-
scribes the specific priors that have been used for Bayesian
inference of C&RT models. Section 4 presents our version
of the Metropolis-Hastings (MH) algorithm and gives a con-
vergence result for one special case. Section 5 gives a repre-
sentative sample of the results of our experiments. The paper
concludes with a comparison with related work (Section 6)
followed by pointers to future work (Section 7).

2 Defining priors with stochastic logic
programs

Our approach to defining priors is related to a line of research
which was independently initiated by [Chipman et al., 1998]
and [Denison et al., 1998]. The basic idea is to specify a prior
distribution over a space of models with a stochastic program
rather than by some closed-form expression:

Instead of specifying a closed-form expression for
the tree prior, p(T), we specify p(T) implicitly by a
tree-generating stochastic process. Each realization
of such a process can simply be considered a ran-
dom draw from this prior. [Chipman et al., 1998]

A convenient language for defining such stochastic pro-
grams is stochastic logic programming [Muggleton, 1996]. A
stochastic logic program (SLP) can be used to define a prior
over a given space of statistical models by a two-step process.
Firstly, a standard logic program is written which defines the
desired model space (the hypothesis space in machine learn-
ing parlance). We simply define a unary predicate cart/1
in a logic program such that each instantiation for T which
makes cart(T) true is a term in first-order logic which rep-
resents a C&RT model. We can exploit the expressiveness

of first-order logic to represent C&RT models, in whichever
logical representation is most convenient.

At this point any C&RT models we wish to exclude from
the hypothesis space can be so excluded by adding the ap-
propriate constraints to the logic program. For example, sup-
pose the user is faced with a classification task and knows (or
wishes to assume) that the distribution over classes is con-
stant over some rectangular region (a ‘box’) of the attribute
space. It follows that the box must be contained within a leaf
of the ‘true’ tree so only trees with a leaf containing the box
need be considered. In general, the user may wish to declare
several such boxes. We have effected such constraints in our
experiments by declaring facts such as those given in Fig 1,
and altering the definition of cart/1 to check that boxes
determined by our declarations are not split in any tree.

%const_class_probs(boxname,var,min,max).
const_class_probs(box28,x2,-inf,127).
const_class_probs(box28,x8,-inf,28).

const_class_probs(box26,x2,128,inf).
const_class_probs(box26,x6,-inf,29.8).

Figure 1: Declaring rectangular regions within which the dis-
tribution over classes is constant.

The stochastic element of the SLP is most easily under-
stood by first considering how the logic programming lan-
guage Prolog searches for logical consequences of a logic
program. Given a query such as :-cart(T) (“find T such
that cart(T) is true”), Prolog will search for suitable Ts
with a deterministic depth-first search. When there is a choice
of rules each of which might lead to a proof, Prolog always
chooses whichever rule occurs first in the logic program. If
this rule leads to a dead-end, then Prolog backtracks and tries
the second rule, and so on.

The basic SLP idea is simple: probability labels are at-
tached to rules in the logic program thus converting it into an
SLP. Now when the search for proofs has to choose between
rules, a rule is chosen probabilistically according to the prob-
ability labels. In this paper, if a chosen rule does not lead
to a proof, then backtracking will try from amongst untried
rules, revisiting the most recent choice-points first and renor-
malising the probabilities as necessary: we call this approach,
introduced by [Cussens, 2000], backtrackable sampling.

Now when the query :-cart(T) is asked, there is a dis-
tribution over possible instantiations for T. Since each T rep-
resents a C&RT model, this provides a prior distribution over
this model space.

In this paper we have extended the representational power
of SLPs so that probability labels may be computed ‘on the
fly’. SLP rules can now be of the form ExpProb : Vars
: Rule. At each point at which Rule is a possible rule
to use, it is required that Vars is a ground list and that
ExpProb is a probability computable from Vars. Fig 2 has
an example SLP where the probability of growing a tree by
splitting a leaf depends on the depth of that leaf.

SLPs define a distribution over proofs, and to understand
this distribution it is useful to represent each proof as a proof

1 - 1/D : [D] : cart(leaf).
1/D : [D] : cart(Split-[L,R]) :-

NewD is D+1, splt(Split),
[NewD] : cart(L), [NewD] : cart(R).

0.4:splt(x1). 0.3:splt(x2). 0.3:splt(x3).

Figure 2: Prior distribution over C&RT models where the
probability of splitting a leaf depends on its depth D.

tree. Fig 3 displays one such proof tree which proves that
cart(x1-[x2-[leaf,leaf],leaf]) is true, i.e. that
this 3-leaf tree is in our model space. (Figs 2 and 3 use an
abbreviated representation of C&RT models, with split val-
ues omitted.) Each proof tree simply consists of the rules
and facts used in the proof ‘bolted together’ by equality con-
straints. The initial query appears in an equality constraint
in the root node. Conceptually, SLPs execute by probabilis-
tically growing a proof tree, backtracking if the constraints
become insoluble.

To sum up, our priors are defined by a sampling algorithm
within a logical framework. The sampling algorithm could,
of course, be implemented in any programming language. It
involves progressively building up a data structure represent-
ing the C&RT model by (i) making choices, (ii) checking
that constraints are not violated and (iii) backtracking if they
have. The motivation for a logic programming implementa-
tion is that procedures (ii) and (iii) are built-in, and that logic
is a convenient language for declaring constraints (such as our
boxes).

Not all distributions can be directly sampled from (hence
MCMC), so such distributions cannot be effectively repre-
sented by defining a direct sampling algorithm. However,
when a statistical model can be viewed as the end result of
some generative process, a generative description is well-
motivated. Bayes nets can be generated by adding arcs [An-
gelopoulos and Cussens, 2001] and C&RT models by split-
ting leaves. Our addition of backtracking extends the appli-
cability of this generative view.

cart(T)
=

cart(Split-[L,R])

splt(Split)
=

splt(x1)

splt(Split2)
=

splt(x2)
cart(L2)

=
cart(leaf)

cart(R2)
=

cart(leaf)

cart(Split2-[L2,R2])
cart(L)

=

cart(R)
=

cart(leaf)

Figure 3: A proof tree which proves
cart(x1-[x2-[leaf,leaf],leaf])

3 Priors for Bayesian C&RT
In this section we describe the actual priors we have used for
the experiments described in Section 5. Fixing some notation,
note that a given C&RT model t maps an example, described

by a set of p predictor variables x = x1, x2, . . . xp, to a distri-
bution over a response variable y. In the case of classification
trees (also known as decision trees) y is discrete and finite,
and in the case of regression trees y is continuous. Some
C&RT implementations throw away information given by the
distribution of y and simply return the majority class or mean
value as appropriate, but this is just a design decision. Fun-
damentally it is a distribution over y that is given.

It follows that each tree t defines a conditional probabil-
ity distribution P (y|t, x). This conditional distribution is the
likelihood function of the following version of Bayes theo-
rem: P (t|y, x) = P (t|x)P (y|t, x)/P (y|x) whose LHS gives
the desired posterior distribution over trees. Note that the
prior P (t|x) is only prior to y, it is conditional on the pre-
dictor variables so that observed values of x in the data can
be used to define sensible priors.

Importantly, this allows us to rule out a priori trees with
leaves which contain few examples. There is nothing to stop a
user allowing trees with sparsely populated leaves, but ruling
out such trees is normal in this research area. It ensures that
the space of possible tree structures is a reasonable (finite)
size. In our experiments only trees whose leaves have at least
5 examples are permitted, following [Denison et al., 1998].
The predictors x could also be used to define a prior biassed
towards even splits of the data if so desired, but we have yet
to investigate the desirability of such an option.

For most of our experiments we decided to use what we
call a GROWTREE prior, which is essentially that used by
[Chipman et al., 1998]. Attempting to use an SLP to model
an externally provided prior provides a test of the represen-
tational flexibility of SLPs: indeed we were unable to pass
this test before we extended SLPs to have variable probabil-
ity labels. Using the GROWTREE prior also allows better
comparison with others’ results.

The GROWTREE prior grows a C&RT tree by starting
with a single leaf node and then repeatedly splits each leaf
node η with a probability α(1+ dη)−β , where dη is the depth
of node η and α and β are prior parameters set by the user to
control the size of trees. Unsplit nodes become leaves of the
tree. If a node is split, then the splitting rule for that split is
chosen uniformly. An abbreviated fragment of the SLP which
expresses this prior is given in Fig 4.

Splt:[Splt]:splt_lf(D,..,A/B,..) :- ..
D1 is D + 1,
NwSplit is A * exp((1+D1),-B), ...
[NwSplit]:splt_lf(D1,..,A/B,..),
[NwSplit]:splt_lf(D1,..,A/B,..).

(1-Splt):[Splt]:splt_lf(D,..,AB,Lf) :-
Lf = leaf(D,..).

Figure 4: GROWTREE prior fragment defined with an SLP

We have also experimented with what we call EDITTREE
priors. Here an ‘initial’ C&RT model is supplied. This can
be any tree, for example the tree produced by the standard
greedy algorithm or one manually entered by the user. This
tree is then probabilistically ‘edited’, by either growing, prun-
ing or changing a splitting rule. The number of such edits is

also probabilistic.

4 Using the Metropolis-Hastings algorithm
The Metropolis-Hastings (MH) algorithm is an MCMC algo-
rithm which defines a Markov chain (T (i)) with a transition
kernel K(ti, ti+1) as follows. If T (i) = t(i), then T (i+1) is
produced by generating T ′

i ∼ q(t′|t(i)) for some proposal dis-
tribution q. An acceptance probability α(t, t′) is used to de-
cide whether to accept the proposed t′. t(i+1) = t′ with prob-
ability α(t, t′) (the proposed t′ is accepted) and t(i+1) = t(i)

with probability 1− α(t, t′). By setting the acceptance prob-
ability like this:

α(t, t′) = min

{

P (t′|x, y)

P (t|x, y)

q(t|t′)

q(t′|t)
, 1

}

(1)

the chain (T (i)) will converge to sampling from the de-
sired posterior P (T |x, y) under weak conditions (what-
ever the starting point t(0) of the chain). It is not diffi-
cult to see (via Bayes theorem) that if q(t|t′)P (t′|x) =
Rq(t, t

′)q(t′|t)P (t|x), for some function Rq , then:

α(t, t′) = min

{

Rq(t, t
′)

P (y|t′, x)

P (y|t, x)
, 1

}

(2)

In our approach we choose proposal distributions q which
permit this simplification of the acceptance probability, and
where the value Rq(t, t

′) is easily computable for each pair of
trees t, t′ . The crucial point is this: such a choice of q ensures
that α(t, t′) is easily computable even though computing the
prior probability for any given C&RT model (as opposed to
merely sampling from the prior) may be prohibitively expen-
sive. This contrasts with [Chipman et al., 1998] where “spec-
ifications [which] allow for straightforward evaluation of p(t)
for any t” are required. For us the computation of prior prob-
abilities can be expensive due to backtracking. Without back-
tracking SLPs are similar to stochastic-context free grammars
(SCFGs)—particularly when probability labels are fixed, and
not computed ‘on the fly’—and SCFG dynamic programming
algorithms could presumably be used to compute prior prob-
abilities. Ruling out backtracking greatly restricts the con-
straints the user can declare so we always allow for back-
tracking.

Since our trees do not explicitly define a distribution over
classes at the leaves of the tree, our likelihoods are marginal
likelihoods—we integrate over all possible class distribu-
tions. This integration automatically prevents over-fitting:
trees with 100% training set accuracy do not generally have
high marginal likelihood. To actually do the integration, we
use exactly the same approach as [Chipman et al., 1998;
Denison et al., 1998; 2002]. For each leaf, the uniform
Dirichlet distribution (all parameters set to 1) is the distribu-
tion over all possible distributions over classes. The Dirichlet
assumption allows a closed form for the marginal likelihood
P (y|t, x).

Our proposals can best be understood by first recalling that
sampling C&RT trees from an SLP prior is effected by sam-
pling proofs from the prior as explained in Section 2, and that
each such proof has an associated proof tree, such as shown

in Fig 3. Each proposal we have considered works by prun-
ing the proof tree corresponding to the current C&RT model
at some point, and then re-growing the proof tree from the
pruning point using the sampling mechanism associated with
the prior. Our proposals only differ in how they choose where
to ‘snip’ the proof tree. Since only the sub-tree below the
prune point is resampled, our proposals are not equivalent to
proposing with the prior P (t|x) (except for one special case
to be discussed shortly). Instead each prune point k corre-
sponds to proposing a tree according to P (t|x, t ∈ Tk) where
Tk is the set of trees which may differ from the current tree
only in the sub-tree under prune point k.

One (overly) simple proposal corresponds to the indepen-
dent Metropolis-Hastings algorithm which prunes away the
current model completely so that a new model is sampled
from the prior independently of the current model. For this
proposal (denoted q0) we have the following MCMC conver-
gence result. Let µi be the distribution over trees produced at
the ith iteration of this independent MH algorithm. Let t̂ be a
C&RT tree with maximal marginal likelihood: then

|µi − P (·|x, y)| ≤ [1 − P (t̂|x)/P (t̂|x, y)]i (3)

where | · | denotes the total variation distance between two
distributions. So there is exponentially fast convergence to
the true posterior P (·|x, y) using this independent MH al-
gorithm. The catch is that, P (t̂|x)/P (t̂|x, y), the ratio be-
tween t̂’s prior and posterior probability, is tiny for any rea-
sonably sized dataset, so in experiments (not presented here)
the independent M-H algorithm performs poorly. The conver-
gence result can be derived from one by [Doob, 1953] which
is given by [Rosenthal, 1995]. To apply Doob’s result it is
necessary to produce an upper bound on

∑

t′ mint Kq0
(t, t′),

where Kq0
is the transition kernel associated with q0. In

fact, we can show (proof omitted) that this sum is exactly
P (t̂|x)/P (t̂|x, y), thus establishing (3). This upper bound
for our discrete finite space is exactly half the size of the
bound for the general independent MH algorithm established
by [Mengersen and Tweedie, 1996].

A somewhat better performing proposal (denoted q0−n)
cycles through proposals qk for k = 0, 1, 2, . . . n for a user-
supplied n, where qk is the proposal which prunes the proof
tree at the kth choice point. We have Rq0−n

(t, t′) ≡ 1, so
that the acceptance probability is simply a likelihood ratio.
However, our best performing proposal (denoted quc) makes
a uniform choice of a prune point from all those available in
the current tree. For quc, Rquc

(t, t′) = dt/dt′ , where dt is the
depth of tree t.

One recent innovation has greatly increased the efficiency
with which the space is explored. In all previous work us-
ing SLPs for MCMC, the prune points to which our pro-
posals jumped were not organised in a proof tree, but in a
sequence (a branch of the relevant SLD-tree, in fact). Es-
sentially, this was because our previous proposal mechanism
was closely modelled on Prolog backtracking: if we back-
tracked to choice point k all C&RT building work done after
that choice point was thrown away. Now, if we backtrack to
point k then only the proof tree below k is (stochastically) re-
built, even if other parts of the proof tree were built chrono-
logically later. Translating this specifically to C&RT mod-

els, this means our proposals can now snip the current C&RT
tree at any node, and re-grow the tree from there, leaving the
rest of the C&RT tree unscathed. This makes it easier for
the Markov chain to head in the direction of high likelihood
trees: sub-trees with high-likelihood tend to be altered rarely
whereas proposed replacements for low-likelihood sub-trees
are accepted relatively often.

5 Experimental results
In our experiments we have used three datasets: the Wis-
consin breast cancer data (BCW), the Kyphosis dataset (K)
and the Pima dataset (P). BCW was originally donated to
the UCI depository by [Wolberg and Mangasarian, 1990] and
was used by [Chipman et al., 1998]. Dataset K comes as
part of the rpart R package for building and manipulating
C&RTs. Dataset P is a UCI dataset which [Denison et al.,
2002] used for extensive Bayesian C&RT analysis. Following
[Chipman et al., 1998] we have simply deleted 16 datapoints
from BCW which contain missing values. In all cases the
machine learning task is binary classification using integer-
valued predictors—9 predictors in the case of BCW, 3 for K
and 8 for P. All splits are binary: made by splitting on some
threshold. There are 683 datapoints for BCW, 81 for K and
768 for P.

We have performed a large number of experiments,
and analysed the results in many ways. Only a small
representative sample of this is reported here. Data
and software for reproducing all of our experiments can
be found at http://www.cs.york.ac.uk/∼nicos/
sware/slps/mcmcms/. We used Sicstus Prolog 3.11 run-
ning under Linux on two machines each with a 2.4GHz pro-
cessor and at least 512Mb RAM. The computation of the log-
likelihood ratio uses a C function called from Prolog. Run-
ning a chain for 50,000 iterations takes at most 30 minutes.

5.1 Comparison to the standard C&RT algorithm
The contrasts between Bayesian C&RT and the standard
greedy algorithm for building a single C&RT model have
been well explored in the existing Bayesian C&RT litera-
ture [Chipman et al., 1998; Denison et al., 1998; 2002]. The
Bayesian method represents posterior uncertainty better and
makes a more thorough exploration of the model space. This
is at the cost of more computation. How well the Bayesian
approach does in terms of predictive accuracy depends, of
course, on the prior. When we do have useful prior knowl-
edge it can help us if it can be incorporated into the prior
distribution. Facilitating this is our central motivation.

A tree with maximal marginal likelihood is a maximum a
posteriori (MAP) model when a uniform prior is assumed.
Call such trees MAPunif trees. Any MCMC run produces
an approximation to a MAPunif tree: it is the maximum
marginal likelihood tree in the MCMC sample. Since the
standard greedy algorithm is closely connected to a search for
a MAPunif tree [Buntine, 1990] it is interesting to compare
the marginal likelihood of trees produced using the greedy al-
gorithm to that of the MAPunif tree approximations found in
the the MCMC sample.

The trees found by rpart for datasets BCW and K using
default settings have (rounded) marginal log-likelihoods -97

−0.4 −0.2 0.0 0.2 0.4

0
5

10
15

N = 256 Bandwidth = 0.009582

Densi
ty

Figure 5: Distribution of differences in estimated class pos-
terior probabilities from two MCMC runs only differing in
random seed.

and -39, and sizes 7 and 5, respectively. Unsurprisingly, there
are trees produced by MCMC runs with higher marginal log-
likelihoods (i.e. with values closer to that of a MAPunif tree).
For BCW (resp. K) we can find a tree with 5 (resp. 3) leaves
and log-likelihood of -86 (resp. -36).

5.2 Reproducibility of results
Since the aim of using MCMC is to approximate the poste-
rior distribution, it is important that inferences drawn from
any reasonably long realisation of the Markov chain are ro-
bust to changing the random seeds which determine the evo-
lution of the chain. Using our original sequence-based pro-
posals, there was strong evidence that this was not the case:
for example, plots of log-likelihood against iteration number
(log-likelihood trajectories) could be quite different for ex-
periments which were identical except for the random seeds
used.

To test our new proof-tree based proposals we performed
the following experiment (amongst many others not reported
here). Two MCMC runs of 50,000 iterations were performed
using the GROWTREE prior (α = 0.95, β = 0.8) using only
2/3 of the Pima dataset, differing only in the random seeds
used. For each of the remaining 256 Pima dataset examples
each of the two MCMC samples were used to approximate
the posterior probability that the example had class label 0.
This was done by simply getting each tree in the MCMC
sample to make a class prediction for the example based on
the majority class at the appropriate leaf and setting the class
posterior probability equal to the relative frequency of class
0 predictions. Clearly, if both MCMC samples were perfect
representations of the true posterior, then the difference in es-
timates of the class 0 posterior would be zero for each exam-
ple. Naturally, this is not achieved but the distribution of the
differences in probability estimates (shown in Fig 5) is highly
concentrated about zero which provides evidence that our ap-
proach often produces values close to the true posterior, for
different runs.

5.3 Using local jumps
Local jumping in tree space helps prevent getting stuck. The
log-likelihood trajectory using q0−7 shown in Fig 6, shows
that the big jumps which q0−7 proposes are rarely accepted,
so the chain remains stuck at the same model for long periods.
This problem is even more pronounced if q0, the independent
MH algorithm,is used. Compare this with other figures where
the quc is being used.

-300

-250

-200

-150

-100

-50

 0 10000 20000 30000 40000 50000 60000

’tr_nd7_a0_95b1_bcw_data_i60K__s1.llhoods’

Figure 6: Log-likelihood trajectory. Prior=GROWTREE
(β = 1), Data=BCW, MCMC=q0−7.

-100

-95

-90

-85

-80

-75

-70

-65

-60

 0 10000 20000 30000 40000 50000 60000

’tr_rn1_a0_95b1_edit_data_i60K__s9.llhoods’

-300

-250

-200

-150

-100

-50

 0 10000 20000 30000 40000 50000 60000

’tr_rn1_a0_95b1_bcw_data_i60K__s1.llhoods’

Figure 7: Log-likelihood trajectories. In both cases:
Data=BCW, MCMC=quc, sequential. For LHS:
Prior=EDITTREE. For RHS: Prior=GROWTREE (β = 1)

5.4 Influence of priors
Fig 7 compares log-likelihood trajectories using the EDIT-
TREE prior and the GROWTREE prior respectively with
all other parameters being equal. The distinct horizontal
line in the EDITTREE trajectory is clear evidence that the
EDITTREE prior is pulling the Markov chain back to the
initial tree. Note that Figs 6-7 all contain initial very low
log-likelihoods (corresponding to the chain’s initial C&RT
model) which have been truncated for space reasons.

[Denison et al., 2002] examined how successful their
chains were at finding C&RT trees with high marginal like-
lihood using the Pima (P) dataset. Their maximum marginal
log-likelihood was -343; our highest was -347. To test a hy-
pothesis that many high likelihood C&RT models did not
have high posterior probability for our priors (and hence
were unlikely to be visited), we started chains from the log-
likelihood=-343 C&RT model of Denison et al.. Fig 8 show
the results where the RHS trajectory corresponds to a prior
with a stronger bias towards smaller trees. In both cases the
prior pulls away from high-likelihood C&RT models, all the
more rapidly for the stronger prior.

Since the goal of including prior knowledge is to improve
decision making under uncertainty (e.g. classifying test ex-
amples), we performed experiments where a known ‘true’
tree was used to generate synthetic train and test data. We
then included boxes (see Section 2) consistent with the true
tree as constraints on a GROWTREE prior, produced MCMC
samples using the synthetic training data, and measured pre-
dictive accuracy on the synthetic test data. Each of the 500
test examples was classified into its most probable class as
estimated by the MCMC sample. This was all repeated for 3
random seeds. With no box constraints test-set accuracies
were 74.8%, 76.2% and 74.4%. With the box constraints
given in Fig 1, the test-set accuracy was exactly 78.6% for
each random seed. These results indicate that accurate prior

-390

-385

-380

-375

-370

-365

-360

-355

-350

-345

-340

 0 10000 20000 30000 40000 50000

’tr_uc_rm_pima_idsd_a0_95b0_8_i50K__s473.llhoods’

-390

-385

-380

-375

-370

-365

-360

-355

-350

-345

-340

 0 10000 20000 30000 40000 50000

’tr_uc_rm_pima_idsd_a0_95b1_i50K__s419.llhoods’

Figure 8: Log-likelihood trajectories. In both cases: Data=P,
MCMC=quc, proof tree. Prior=GROWTREE. Initial tree =
Denison’s maximal likelihood. For LHS: β = 0.8. For RHS:
β = 1

knowledge (i) helps convergence and (ii) increases predictive
accuracy.

6 Comparison with related work
This paper lies at the intersection of two lines of work: that on
Bayesian C&RT [Chipman et al., 1998; Denison et al., 1998;
2002] and that on using SLPs for general Bayesian model in-
ference [Angelopoulos and Cussens, 2001]. The SLP work
had claimed to provide a general Bayesian machine learning
method but had only results for model spaces composed of
Bayesian nets. This paper backs up this initial claim by ap-
plying the basic framework of [Angelopoulos and Cussens,
2001] to C&RT model space. The SLP method has also been
improved in a number of ways: (i) probabilities no longer
need be hard-coded constants, (ii) the use of backtrackable
sampling adds an element of search to the prior and (iii) the
proposal mechanism now works on a (proof) tree structure
which makes it easier to move through the model space.

The most obvious difference from other Bayesian C&RT
work is that here all (non-parameter) priors are defined by an
SLP—however as we have seen SLPs can encode (at least
some) priors originally expressed otherwise. Secondly, in our
approach there is only one way of proposing new C&RT mod-
els: by pruning and re-growing the proof tree. In the other
Bayesian C&RT work a variety of moves are used—five are
listed in [Denison et al., 2002, p. 161]. The compensation
for our severely restricted proposals is that no prior terms
complicate the acceptance probability. Constraining the pro-
posal mechanism to produce such an acceptance probability
is also a choice taken in [Denison et al., 2002]—although
for this to work the proposal mechanism has to depend upon
global parameters of the current tree. The biggest contrast
with previous Bayesian C&RT work is that we permit big
jumps by pruning the proof tree near the root. In [Denison et
al., 2002] it is noted that pruning off any given branch of a
tree is straightforward in their approach but that how to gen-
erate a similar branch (to maintain reversibility) “is not ob-
vious”. In the approach presented here it is obvious, we can
just re-grow the proof tree because the proposal is based on
the prior. In [Denison et al., 2002] the danger that many
big jumps will propose trees with sparsely populated leaves
is also noted—we avoid this problem by simply compelling
the proposal mechanism to search for trees (via backtracking)
with adequately populated leaves.

7 Future work
The convergence result (3) for the independent MH algo-
rithm is something we hope to generalise to other propos-
als. This will guide the choice of proposal mechanism in
contrast to our current empirical approach. In ongoing work
[Angelopoulos and Cussens, 2005] experimental results have
been produced which show that tempering improves the rate
of convergence of quc considerably. Thirdly, like all other
work (that we know of) on Bayesian C&RT, we do not
have full-blown convergence diagnostics implemented: a de-
ficiency we hope to remedy.

Our current implementation does not fully exploit Prolog’s
built-in backtracking: if this were possible this would permit
a significant speed-up. A more radical approach is to adapt an
existing Prolog system to have our probabilistic mechanisms
built-in.

Acknowledgements
Thanks to 3 anonymous reviewers for useful criticisms. This
work was supported by the UK EPSRC MathFIT project
Stochastic Logic Programs for MCMC (GR/S30993/01).

References
[Angelopoulos and Cussens, 2001] N. Angelopoulos and

J. Cussens. Markov chain Monte Carlo using tree-based
priors on model structure. In Proc. UAI-01, 2001.

[Angelopoulos and Cussens, 2005] N. Angelopoulos and
J. Cussens. Tempering for Bayesian C&RT. Sub’d, 2005.

[Buntine, 1990] Wray Buntine. A Theory of Learning Clas-
sification Rules. PhD thesis, Uni. of Tech., Sydney, 1990.

[Chipman et al., 1998] H. A. Chipman, E. I. George, and
R. E. McCulloch. Bayesian CART model search. JASA,
39(443):935–960, 1998.

[Cussens, 2000] J. Cussens. Stochastic logic programs:
Sampling, inference and applications. In Proc. UAI-00,
2000.

[Denison et al., 1998] D. G. T. Denison, B. K. Mallick, and
A. F. M. Smith. A Bayesian CART algorithm. Biometrika,
85(2):363–377, 1998.

[Denison et al., 2002] D. G. T. Denison, C. C. Holmes, B. K
Mallick, and A. F. M. Smith. Bayesian Methods for Non-
linear Classification and Regression. Wiley, 2002.

[Doob, 1953] J. I. Doob. Stochastic Processes. Wiley, New
York, 1953.

[Mengersen and Tweedie, 1996] K. L. Mengersen and R. L.
Tweedie. Rates of convergence of the Hastings &
Metropolis algorithms. Ann. Stats., 24:101–121, 1996.

[Muggleton, 1996] S. Muggleton. Stochastic logic pro-
grams. In Advances in ILP. 1996.

[Rosenthal, 1995] J. S. Rosenthal. Convergence rates for
Markov chains. SIAM Review, 37(3):387–405, 1995.

[Wolberg and Mangasarian, 1990] W. H. Wolberg and O. L.
Mangasarian. Multisurface method of pattern separation
for medical diagnosis applied to breast cytology. PNAS,
87:9193–9196, 1990.

