BAYESIAN LEARNING OF BAYESIAN NETWORKS

Bayesian Learning of Bayesian Networks with Informative
Priors

Nicos Angelopoulos NICOS@CS.YORK.AC.UK
James Cussens JCQCS.YORK.AC.UK
Department of Computer Science

University of York

Heslington, York, YO10 5DD, UK

Editor: Some editor

Abstract

This paper presents and evaluates an approach to Bayesian model averaging where the
models are Bayesian nets (BNs). Prior distributions are defined using stochastic logic pro-
grams and the MCMC Metropolis-Hastings algorithm is used to (approximately) sample
from the posterior. Experiments using data generated from known BNs have been con-
ducted to evaluate the method. The experiments used 6 different BNs and varied: the
structural prior, the parameter prior, the Metropolis-Hasting proposal and the data size.
Each experiment was repeated three times with different random seeds to test the robust-
ness of the MCMC-produced results. Our results show that with effective priors (i) robust
results are produced and (ii) informative priors improve results significantly.

Keywords: Prior knowledge, Bayesian inference, Bayesian model averaging, Markov
chain Monte Carlo, loss functions, stochastic logic programs.

1. Introduction

The Bayesian approach to machine learning is (conceptually) remarkably simple. It assumes
that, before any analysis of data, a space of models (or hypotheses) is defined, and that one
of these models is the true model of the process which led to the data being observed.
Further it is assumed that a prior distribution is defined over this model space. The prior
probability of any given model represents the modeller’s belief that it is the true model based
on information available prior to the data. Prior plus data define the posterior distribution
over model space, and from a pure Bayesian viewpoint the posterior is the endpoint of
statistical inference.

In practice, however, the posterior is rarely the final result since it is generally used to
make rational decisions. For example, a posterior distribution over a space of classifiers
can be used to classify new examples: the example is just classified to whichever class has
minimal expected cost according to the posterior. If misclassification costs are equal this is
just the most likely class for the example according to the posterior.

If the end-goal is to make rational decisions (for example, classification decisions) based
on observed data, then there are strong arguments for a Bayesian approach (Howson and
Urbach, 1989) which conclude that the posterior distribution is what is required to do this.
Also the posterior (suitably presented and/or summarised) may permit insight into the

ANGELOPOULOS AND CUSSENS

combined information provided by prior and data. Naturally, though, there are important
questions which a Bayesian analysis does not address. Bayesian inference (at least in its
‘vanilla’ form) is inference conditional on the actually observed data, it is not interested in
other data which might have been observed but were not. If, for example, we want bounds
on the probability of observing a dataset which leads some learning algorithm to produce
a result which is ‘approximately correct’ then non-Bayesian results on uniform convergence
are needed (Vapnik and Chervonenkis, 1971).

Even when a Bayesian analysis is theoretically desirable, there are often large practical
obstacles to its application. Anyone who has tried to shoe-horn real prior knowledge, with all
its heterogeneity, into a usable prior distribution will have encountered a problem this paper
aims to reduce. Formalising prior knowledge so that it is accessible to Bayesian inference
requires a representation language which straddles the gap between the prior knowledge in
a human’s brain and that expressed by a probability distribution. In this paper we propose
first-order logic with an additional probabilistic component (specifically, stochastic logic
programs) as such a language. It is of course no great discovery that first-order logic forms
a good basis for formalising human thoughts: it was specifically designed to do just that
(Frege, 1879).

A second problem for the Bayesian approach is getting hold of the posterior. In many
cases, particularly in parametric Bayesian inference, a conjugate prior distribution is used
so that the computation and representation of the posterior are greatly simplified. In the
current paper the focus is on non-parametric Bayesian inference: both prior and posterior
are defined over a large space of models. Although in this paper, in contrast to some of
our other work (Angelopoulos and Cussens, 2004a), each model space is finite, they are
nonetheless generally too big to represent explicitly. This means that a simple tabular
representation of prior and posterior is ruled out. Here we adopt a common approach to
this problem: a Markov Chain Monte Carlo (MCMC) algorithm is used to construct an
approximate sample from the posterior and the sample is then used as a proxy for the
actual posterior.

Using MCMC, an approximate sample from the true posterior distribution is generated,
and from a pure Bayesian point of view, the only learning result to evaluate is the accuracy
of this approximation. Our MCMC runs have been repeated with different random seeds to
test that similar estimates of posterior quantities (e.g. expected losses) are produced each
time. We also extract single models (‘best guesses’ of the true model) from the MCMC
sample to evaluate our results from the more usual non-Bayesian perspective.

The paper is structured as follows. Section 2 is a survey of existing methods of incorpo-
rating prior information into Bayesian net learning. Section 3 shows how to use stochastic
logic programs to define prior distributions. Section 4 describes how our SLP priors are
‘folded into’ the Metropolis-Hastings algorithm to generate approximate samples from the
posterior. Sections 5 and 6 describe the experiments we have conducted and the results of
those experiments, respectively. The paper ends with conclusions and suggestions for future
work in Section 7.

BAYESIAN LEARNING OF BAYESIAN NETWORKS

2. Existing approaches to using prior information when learning the
structure of Bayesian nets

In this section, we provide an overview of existing approaches to including prior knowledge
into BN learning. However, it should be noted that most BN learning approaches make
no significant attempt to integrate prior knowledge into the learning process. As Friedman
and Koller (2003) note “ ...relatively little attention has been paid to the choice of struc-
ture prior, and a simple prior is often chosen largely for pragmatic reasons. The simplest
and therefore most common choice is a uniform prior over structures (Heckerman, 1998)”
Madigan et al. (1995) state that “All of the reported applications of BMA use a uniform
prior distribution, thereby implying that all models are equally likely a priori.” They go
on to argue that:

...in the context of knowledge-based systems, or indeed in any context where
the primary aim of the modeling effort is to predict the future, such prior distri-
butions are often inappropriate; one of the primary advantages of the Bayesian
approach is that it provides a practical framework for harnessing all available
resources including prior expert knowledge.

We agree with this position and our own work is an attempt facilitate harnessing expert
knowledge. Moreover, despite the frequent use of non-informative priors there remains some
work which seeks to incorporate prior knowledge into BN learning. We turn now to consider
the various ways in which this has been done.

2.1 Hard constraints

The next step up in complexity from a uniform prior is to completely rule out particular
structures. This approach has been applied in both Bayesian and non-Bayesian approaches.
In the Bayesian case, one can either declare a uniform prior on the surviving structures or go
on to specify some non-uniform prior using one of the techniques given in Sections 2.2-2.4.

An early non-Bayesian example of using hard constraints is the algorithm presented by
Srinivas et al. (1990) which allows (but does not require) an expert to effect constraints of
four different kinds:

e Declaring that a variable must be a root node

e Declaring that a variable must be a leaf node

e Declaring that one variable must be the parent of another
e Making explicit conditional independence declarations

The expert knowledge also defines a partial order between variables (a ‘priority ordering’)
which declares an ancestor relation between pairs of nodes. This knowledge guides the
learning of a BN by a non-Bayesian algorithm.

In Bayesian approaches a hard constraint sets the prior probability of the relevant struc-
tures to zero. It follows from Bayes theorem that such structures will also have posterior

ANGELOPOULOS AND CUSSENS

probability of zero no matter how much the data might support them. An interesting sug-
gested application of zero prior probabilities applies when (unusually) we consider structures
containing extra ‘hidden’ variables not present in the data:

One difficulty in considering the possibility of hidden variables is that there is
an unlimited number of them and an unlimited number of belief-networks that
can contain them ... Another approach is to specify explicitly nonzero priors for
only a limited number of belief-network structures that contain hidden variables.
(Cooper and Herskovits, 1992)

By far the most common hard constraint is to impose a total ordering < on variables
such that y is a parent of x (y € II) only if y < z. (This is equivalent to stating that y is
an ancestor of z only if y < x.) This is the approach taken by Buntine (1991) and in the K2
algorithm (Cooper and Herskovits, 1992), for example. Such an ordering reduces the model
space considerably. For example, for 10 variables there are about 4.2 x 10'® possible BN
structures, but with an ordering < this reduces to 20(10.2) — 9(10x9)/2 — 3 5 % 1013 (Cooper
and Herskovits, 1992).

As an alternative to supplying a total ordering on variables, the BIFROST algorithm
(Hgjsgaard and Thiesson, 1995) asks the user to partition the variables into ‘blocks’ and
supply a total ordering only on the blocks.

Hence model selection in BIFROST demands that the user specifies a block
recursive model by which the types of potential associations between variables
are defined. BIFROST will then on the basis of a complete data set determine on
which of the potential associations that actually holds. (Hgjsgaard and Thiesson,
1995)

In addition the user may also give information on the existence of links.

It is possible to reduce the set of possible selectable models by specifying prior
knowledge of some partial associations which definitely exist and some which
definitely do not exist. (Hgjsgaard and Thiesson, 1995)

Using a greedy non-Bayesian approach, BIFROST induces a block-recursive model (aka a
chain graph) not a Bayesian network. Since BIFROST only considers decomposable models,
the resulting block-recursive model can always be translated into a Bayesian network.

Another common constraint is to limit the number of parents any variable may have
(the indegree) (Cooper and Herskovits, 1992; Friedman and Koller, 2003). Such a constraint
can be justified as more than just a convenience:

There are few applications in which very large families are called for, and there
is rarely enough data to support robust parameter estimation for such families.
From a more formal perspective, networks with very large families tend to have
low score. (Friedman and Koller, 2003)

The ‘low score’ referred to here is a measure of fit to data, so BNs with large families are
likely to be largely ruled out by the data. Although a tight bound on indegree can reduce
the set of possible models considerably, for n variables and an indegree k, the number of
possible structures is still 20*71°6") (Friedman and Koller, 2003).

BAYESIAN LEARNING OF BAYESIAN NETWORKS

To finish this section on hard constraints, note that hard constraints are the most
significant form of prior knowledge for the following reason supplied by Langseth and Nielsen
(2003):

The use of structural priors when learning BNs has received only little atten-
tion in the learning community. The most obvious reason is that in most cases
the effect of the prior is dominated by the likelihood term, even for relatively
small databases. One exception, however, is when some of the network struc-
tures are given zero probability a priori, in which case the data cannot change
that belief.

2.2 Using priors on arcs
2.2.1 USING INDIVIDUAL ARC PROBABILITIES

The most natural non-uniform prior on Bayesian networks uses (i) a total ordering on
variables and (ii) assumptions of independence so that the probability of a graph is simply
the product of probabilities of its components. Call a prior which meets these two conditions
modular. This approach originates with Cooper and Herskovits (1992) where P(Bg), the
probability of structure Bg is the product of the probabilities of parent sets (wf) for each
variable x;:

Assume that P(Bg) can be calculated as P(Bg) = [[,_;, P(n? — x;). Thus,
for all distinct pairs of variables x; and x;, our belief about X; having some
set of parents is independent of our belief about z; having some set of parents.
(Cooper and Herskovits, 1992, p.18)

A second independence assumption can be used to decompose P(mf — z;):

The probability P(7r;9 — x;) could be assessed directly or derived using addi-
tional methods. For example, one method would be to assume that the presence
of an arc in 7125 — x; is marginally independent of the presence of the other arcs
there; if the marginal probability of each arc in 7rZ-S — x; is specified, we can

compute P(r? — ;). (Cooper and Herskovits, 1992, p.18)

Another early use of this prior is given by Buntine (1991), who gives an explicit formula
for the probability of a structure II in terms of individual arc probabilities. Assume that
the expert has given us an ordering < and also for any y and x, where y < x, has given us
P(y — z| <, E). E represents information from the expert. For any structure II consistent
with <, the first independence assumption gives us:

Pr(l| <,E) = [[Pr(iL.| <, E)
reX

where II,; is the family structure for node x, and the second independence assumption gives
us:

Pr(u| <, E) = | [] Pr(y— z| <, E) [T -Priy— =l < E)

ANGELOPOULOS AND CUSSENS

The possibility of computing exact posterior quantities using modular priors make them an
attractive option. When the true ordering is not known modular priors can still be exploited
by summing/maximising over orders (Koivisto and Sood, 2004) or sampling orders using
MCMC (Friedman and Koller, 2003).

Note that the total order < is crucial for the simple product form of this prior. Without
it we have to consider combinations of parent-child links which give rise to directed cycles
and hence illegal Bayesian networks. To see this consider the approach of Valdueza Castelo
and Siebes (1998). In this approach the user is not required to supply a total ordering
<. For any two distinct nodes A and B, the user is allowed (but not required) to define
P(A— B), P(A+ B) and P(A...B). P(A...B) denotes the probability that there is no
arc. Clearly we must have

P(A— B)+P(A—B)+P(A...B)=1

Valdueza Castelo and Siebes (1998) assume that the user’s beliefs are coherent so that
probabilities given by the user do not contradict this equation. If, for any two distinct nodes
A and B, the user provide fewer than two probabilities, then the unspecified probabilities are
set automatically by uniformly distributing the remaining probability mass. For example,
if the user declares only that P(A — B) = 3/4, then the system sets P(A «— B) =
P(A...B)=1/8.

Given a BN structure Bg, let (v; < v;)ps be either v; — v; or v; «— vj or v;...v;
according to which of these three possibilities is specified by Bg. If we were to set

P(Bslé) = [] pl(vi < v))5sld)

Vi,]GV

i#]

then we would not have defined a probability distribution over BN structures because
>-ps P(Bs|€) < 1. The problem is that this simple product distribution assigns positive
probability to directed graphs with cycles, so some of the mass for the BNs is lost.

The solution is simple. The product distribution is altered so that graphs with directed
cycles are set to probability zero, and to compensate a normalising constant is introduced.
Valdueza Castelo and Siebes (1998) consider two options for normalisation. The distribution
over BNs can either be:

PBsl¢) =c [] p((wi < v))psl6) (1)
V3,V cv
i#j
or
PBsl¢) =c+ [] p((wi < vi)psl6) (2)
V05 (2%
i#j
Although Valdueza Castelo and Siebes (1998) do not describe it as such, Equation 1 defines
a log-linear (also exponential-family or MAXENT) distribution over BNs, where the links
are the ‘features’ of the BN and c is the dreaded partition function Z. In general, ¢ will be
hard to calculate, but as Valdueza Castelo and Siebes (1998) note we generally do not need
to, since it is often enough to have probabilities defined only up to a normalising constant.

BAYESIAN LEARNING OF BAYESIAN NETWORKS

The approach of Valdueza Castelo and Siebes (1998) turns out to be essentially the same
as one of those suggested by Madigan and Raftery (1994). In their experiments, Madigan
and Raftery (1994) initially use a uniform prior, but this is criticised as follows:

In the examples considered above, the prior model probabilities pr(M) were as-
sumed equal (Cooper and Herskovits, 1992, also assume that models are equally
likely a priori). In general this can be unrealistic and may also be expensive
and we will want to penalise the search strategy as it moves further away from
the model(s) provided by the expert(s)/data analyst(s). Ideally one would elicit
prior probabilities for all possible qualitative structures from the expert but this
will be feasible only in trivial cases.

They go on to discuss an alternative to the uniform prior:

For models with fewer than 15 to 20 nodes, prior model probabilities may be
approximated by eliciting prior probabilities for the presence of every possible
link and assuming that the links are mutually independent, as follows. Let
E = EpUE4 denote the set of all possible links for the nodes of model M , where
Ep denotes the set of links which are present in model M and £4 denotes the
absent links. For every link e € £ we elicit pr(e), the prior probability that link
e is included in M. The prior model probability is then approximated by

pr(M) oc [T pr(e) TT (1 = pr(e))

eefp ecf

Prior link probabilities from multiple experts are treated as independent sources
of information and are simply multiplied together to give pooled prior model
probabilities. Clearly, the contribution from each expert/data analyst could be
weighted. (Madigan and Raftery, 1994)

The simplicity with which this prior incorporates information from multiple sources
is a strong point in its favour, however the independence assumption seems unrealistic.
Richardson and Domingos (2003) have recently used a similar method.

2.2.2 A DISTANCE BASED APPROACH

Eliciting very many arc probabilities is unrealistic, so Madigan and Raftery (1994) go on
to consider a coarser approach:

For applications involving a larger number of nodes or where the elicitation of
link probabilities is not possible, we could assume that the “evidence” in favour
of each link included by the expert(s)/data analyst(s) in the elicited qualitative
structure(s) is “substantial” or “strong” but not “very strong” or “decisive”
(Jeffreys, 1961). For example, we could assume that the evidence in favour of
an included link lies at the center of Occam’s window corresponding to a prior
link probability for all e € Ep of

1
pr(e) - OL+0
oy (2522)

7

ANGELOPOULOS AND CUSSENS

Similarly, the prior link probabilities for e € £4 are given by

OL+0ORr
2

exp (
pr(e) =
1+ exp (LLQOR)

(Madigan and Raftery, 1994)

This approach is most easily explained if we assume the domain expert has provided us
with a single model which s/he proposes as his/her ‘best guess’. Basically, each arc in this
elicited model receives the same prior probability, and this probability will be higher than
that for arcs not in the elicited model. The parameters O, and Op are set by the user, and
affect the search algorithms proposed in Madigan and Raftery (1994). Their effect on the
prior is to determine the prior bias in favour of arcs included in the model provided by the
user.

A similar prior is used by Heckerman et al. (1995a) who present a Bayesian approach
where “a user specifies his prior knowledge about the problem by constructing a Bayesian
network, called a prior network, and by assessing his confidence in this network.” They
argue that “...structures that closely resemble the prior network will tend to have higher
prior probabilities.” If a given structure Bg differs from the prior network by d arcs, then

P(Bg) = ¢’

where k (0 < k < 1) is a user-selected penalty factor and ¢ is a normalising constant.

An alternative to penalising structures too distant from the expert’s is simply to fix on
some particular prior network irrespective of expert opinion. For example, Friedman and
Koller (2003) consider (but do not use) a prior which penalises dense networks. In this
case, implicitly, the arcless BN is the prior network. Suppose 3 is the probability for an
edge to be present, then a structure with m edges will have prior probability proportional
to Bm(l _ ﬂ)C’(n,Q)—m'

2.3 Priors over variable orderings

We have seen that if the user is prepared to supply a total order < then setting an arc-based
prior is simplified (as is learning in general). If the user is unwilling to do this, he/she might
at least provide a prior over possible orderings. Although Madigan and Raftery (1994)
suggest that “In the directed case it may be possible to construct a prior distribution
on the space of orderings ...”, this possibility is only really explored by Friedman and
Koller (2003). However, this work concentrates on a MCMC method for sampling from the
posterior distribution over orderings, rather than exploring methods for defining priors over
that space. Consequently Friedman and Koller (2003) restrict their work to using a uniform
distribution over orderings. Such a distribution is not hypothesis equivalent (Heckerman
et al., 1995a): different structures in the same Markov equivalence class have different
priors. Concerning this problem Friedman and Koller (2003) state that:

In general, while this discrepancy in priors is unfortunate, it is important to see
it in proportion. The standard priors over network structures are often used not

BAYESIAN LEARNING OF BAYESIAN NETWORKS

because they are particularly well-motivated, but rather because they are simple
and easy to work with. In fact, the ubiquitous uniform prior over structures is
far from uniform over PDAGs (Markov equivalence classes)—PDAGs consistent
with more structures have a higher induced prior probability.

This raises the question of the importance of hypothesis equivalence when setting priors.
When the goal of BN learning is to induce a standard probabilistic model, then BNs in
the same Markov equivalence class (i.e. defining the same set of probability distributions)
are interchangeable and so it might seem inconsistent if they do not all have the same
prior. However, if we consider working in a model space of Markov equivalence classes
(whether represented by PDAGs or not) there is no inconsistency: the prior probability of
a Markov equivalence class of BNs can be defined to be the sum of the priors of the BNs
in that class. There seems no reason why these BN priors need be equal. Of course, it
may be more convenient to define a prior directly on the Markov equivalence class: this
is a knowledge engineering issue. In the case where BNs model more than probability
distributions, for example where the arcs also have a causal interpretation then, of course,
there is no argument for hypothesis equivalence.

2.4 Defining priors using global features

An application where the proper incorporation of prior structural knowledge is particularly
important is the use of Bayesian networks to represent pedigrees (Sheehan and Sorensen,
2003). Pedigrees are directed graphs representing family relationships between individual
people (or other animals). Given DNA data on a group of individuals it is often desired
to uncover the pedigree relating them: settling paternity cases is a common motivation.
Given DNA data x and a pedigree g, a likelihood P(x|g) can be determined using the
Mendelian laws of genetic inheritance. A Bayesian approach is possible by defining a prior
distribution P(g) in addition. If the number of possible pedigrees is not too great it is
possible to apply an exact Bayesian approach to this, where the posterior probability of each
pedigree is calculated. This is the approach taken in the (freely available) familias system:
http://www.math.chalmers.se/~mostad/familias/ (Egeland et al., 2000). There is a
variety of BN representations of pedigrees in the literature. Here we will have each random
variable in the BN represent the genotype of some individual. (A person’s genotype is the
entire set of genes under consideration for that person.)

For pedigrees, the terms, ‘parent’ and ‘child’ are not metaphors; a link A — B in a
pedigree states that the person A is a known parent of the person B. Nodes in a pedigree
have zero, one or two parents, corresponding to the number of known parents of the indi-
vidual corresponding to that node. If the pedigree is represented as a Bayesian network this
becomes a BN learning task. A Bayesian approach requires that a prior over each possible
pedigree is specified. In the familias system (Egeland et al., 2000) each pedigree g has a
prior proportional to

M?I(Q)M;P(Q)Méc(g) (3)

where: M7, Mp and Mg are non-negative parameters set by the user, by(g) quantifies the
amount of inbreeding present in g, bp(g) quantifies the level of promiscuity in g and bg(g)
is the number of generations in g. Hard constraints can also be included by specifying

ANGELOPOULOS AND CUSSENS

any known family relationships. Once pedigrees not satisfying the hard constraints are
excluded, a uniform distribution over the survivors can be imposed by setting M; = Mp =
Mg = 1. However, doing so tends to give unrealistically high prior probabilities to pedigrees
displaying high levels of inbreeding and promiscuity.

2.5 Setting parameter priors

Up to this point, only probabilities on Bayesian net structures—not parameters—have been
considered. But it is not possible to consider only structure, since a BN structure on
its own does not define a likelihood for the data. It follows that for each BN structure,
a prior density over possible parameters for that structure is required. Methods for so
doing will not be explored here, since our focus is on structural priors and the issues have
been well covered elsewhere (Heckerman et al., 1995b). In short, there are compelling
reasons to use Dirichlet priors, not least because, with complete data, it is possible to
integrate the parameters out to get a closed form for the marginal likelihood. Prior Dirichlet
parameters should be chosen so that BNs in the same Markov equivalence class have the
same marginal likelihood. Using the freely available deal system (which is an R package)
http://www.math.aau.dk/novo/deal/ (Bottcher and Dethlefsen, 2003) is a good way to
understand how to set the Dirichlet priors.

3. Defining informative priors using stochastic logic programs

We use stochastic logic programs (SLPs) to define informative priors on BN structures.
Basically, an SLP is a logic program with added probabilities. These probabilities are
used to change the normal Prolog depth-first backtracking search to a probabilistic depth-
first search, which in this paper will use backtracking. Stochastic logic programs were
introduced by Muggleton (1996). Maximum likelihood parameter estimation for SLPs was
done by Cussens (2001) and the first use of SLPs to define prior distributions was by
Angelopoulos and Cussens (2001). Earlier work on SLPs, such as (Cussens, 2001), did not
permit backtracking as we do here; backtracking for SLPs was first introduced by Cussens
(2000).

In this section, the aim is to give a concise account of the basic method. Throughout
this section, deliberately simplistic examples of SLPs and fragments of SLPs will be used
for explanatory purposes.

3.1 Defining the model space with a logic program

Before considering how to define an informative prior over a space of models using an
SLP, we will consider the easier—and related—problem of defining a model space with a
logic program. Suppose that we wish to consider a space of possible BNs (denoted by)
containing a mere 5 Bayesian nets, as listed in Fig 1. To use a logic program to represent
this space the first decision is to choose a representation of each member of Q2 as a first-order
term. (In all applications that have been studied so far, it has been natural to use ground
first-order terms to represent statistical models, although there is no actual requirement for
groundedness.) One option is to represent BNs as a list of families. Each family specifies
a child together with a list of its parents. Next we choose a monadic predicate symbol

10

BAYESIAN LEARNING OF BAYESIAN NETWORKS

to denote the set of models so represented. Suppose we used k/1 for this purpose. This
produces the logic program in Fig 1. k/1 is such that k(bn) is true iff bn represents an
BN in Q. Note that the functor « is an operator so that b < [a, | is syntactic sugar for
" (b, a,c]).

:= op(100, xfx, <=’).

ﬁ - g - g k([a<-[],b<-[al,c<-[b]1).

q_ A - s - e k([a<-[],b<-[a,c],c<-[1]1).
=) - B o k([a<-[],b<-[al,c<-[11).
4 - e - e k([a<-[b] ,b<-[c]l,c<-[11).

k([a<-[],b<-[1,c<-[11).

Figure 1: A very small model space and the logic program defining this space.

Naturally, much bigger model spaces can be defined using this technique. The logic
program in Fig 2 uses a binary predicate k/2 to define the set of all BNs consistent with
some given ordering of the BN random variables. The first argument contains the ordering
and the second the BN. The program in Fig 2 represents BNs as a list of edges, rather than
a list of families—this is just more convenient for this program.!

:- op(100, xfx, ’<=?).

k([1,01).
k([RVIRVs], BN) :- %it’s a Bayes net if
k(RVs, TailBN), %this is and ..
edges (RVs, RV, TailBN, BN). %we connect RV thus giving BN
edges([], _RV, BN, BN). % Finished.
edges([HIT], RV, TailBN, BN) :- % Connect or otherwise, each
connected(H, RV, TailBN, MidBN), % potential parent.

edges(T, RV, MidBN, BN).

connected(Pa, RV, TailBN, [Pa<-RV|TailBN]). % connect
connected (_NoPa, RV, BN, BN). % don’t connect

Figure 2: A logic program defining a model space containing all BNs consistent with some
given variable ordering.

Fig 3 shows what happens when we use a normal Prolog interpreter to enumerate all
BNs consistent with the lexicographic ordering for random variables a, b and c. Note that
k/2 defines not one model space but an infinite number: one for each possible ordering

1. Some variables in Fig 2 begin with an underscore. This is just a Prolog convention for variables that
appear only once in a clause.

11

ANGELOPOULOS AND CUSSENS

provided by an instantiation of the first argument. It turns out to be very convenient to
have such parameterised definitions of model spaces.

| ?- k([a,b,c],BN).

BN = [c<-a,b<-a,c<-b] 7 ;
BN = [b<-a,c<-b] 7 ;

BN = [c<-a,c<-b] 7 ;

BN = [c<-b] ? ;

BN = [c<-a,b<-a] 7 ;

BN = [b<-a] ? ;

BN = [c<-a] 7 ;

BN = []1 7 ;

no

Figure 3: Enumerating 3 node BNs consistent with lexicographic ordering, using the pred-
icate k/2 defined in Fig 2. The semi-colons are user input.

Next, consider the logic program in Fig 4. This is similar to the program in Fig 2 except
that BNs do not have to respect the ordering of the variables provided in the first argument.
Because of this it is necessary to check that any graphs produced are acyclic. The code for
doing this in Fig 4 is chosen for simplicity and is not the most efficient way of checking for
cycles. The cut (!) in Fig 4 is a ‘green cut’: removing it to make the logic program pure
would only affect the program’s efficiency. The symbol \+ is Prolog notation for negation,
which in logic programs is negation-as-failure not standard first-order negation.

Logic programs (being a subset of first-order logic) provide a convenient high-level and
declarative language with which to precisely define complex model spaces. For example, if
we wish to restrict attention to only those BNs which respect some conditional independence
relation it is enough to describe the condition in first-order logic and add it to the definition
of what constitutes a model.

3.2 Representing proofs with proof trees

Consider the behaviour exhibited in Fig 3. An initial query k([a,b,c],BN) is posed
to the Prolog interpreter: this amounts to the question: does there exist a BN such
that k([a,b,c],BN) is true?. The interpreter (1) finds a proof (not shown in Fig 3)
that k([a,b,c],BN) is true, (2) gives an affirmative answer and (3) provides a witness
BN=[c<-a,b<-a,c<-b] corresponding to the found proof. In Fig 3 the user has asked for
further proofs by entering ‘;’ and the interpreter finds 8 proofs in total, providing a wit-
ness BN in each case. As will be explained in Section 3.3, SLPs define a distribution over
first-order terms such as BN=[c<-a,b<-a,c<-b] by defining a distribution over the proofs
of queries such as k([a,b,c],BN).

Since proofs play such a central role in SLP-defined distributions, we need an appropriate
representation of them. It will prove useful to represent each proof as a proof tree. Proof
trees are fully described, for example, by Nilsson and Matuszyniski (1995). Basically, a proof

12

BAYESIAN LEARNING OF BAYESIAN NETWORKS

k([1,01).
k([RV|RVs],BN) :- % it’s a Bayes net if
k(RVs,TailBN), % this is and ..

edges (RVs,RV,TailBN,BN), % we connect RV thus giving ..
no_cycle(BN). % a BN

edges ([]1,_RV,BN,BN). % finished
edges([H|T],RV,TailBN,BN) :- edges(T,RV, [H<-RV|TailBN],BN).
edges([H|T],RV,TailBN,BN) :- edges(T,RV,[RV<-H|TailBN],BN).

edges([_H|T],RV,TailBN,BN) :- edges(T,RV,TailBN,BN).

no_cycle([]).

no_cycle(BN) :-
select(_X<-Y,BN,Rest), % delete a parent ..
\+ select(Y<-_Z,BN,_), % which is an orphan
!, no_cycle(Rest).

select(H, [H|T],T).
select (X, [HIT],[HIT2]) :- select(X,T,T2).

Figure 4: A logic program defining a model space containing all BNs for a given set of
variables.

tree is the logic programming version of a parse (or derivation) tree for grammars. Proof
trees are constructed by bolting together elementary trees. Each clause in the logic program
has a corresponding elementary tree. Figs 5 and 6 show two clauses from Fig 4 together
with their corresponding elementary trees. (We have abbreviated some of the predicate
names in Fig 6 for reasons of space.)

k(0L D). k(01,0

Figure 5: A unit clause with its elementary tree representation.

k([RV|RVs],BN) :- k([RV|RVs], BN)
k(RVs,TBN),
e(RVs,RV,TBN,BN),
nc(BN).
k(RVs, TBN) e(RVs, RV, TBN, BN) nc (BN)

Figure 6: A non-unit clause with its elementary tree representation.

13

ANGELOPOULOS AND CUSSENS

Atomic goals (i.e. things we want to prove such as k([a,b,c],BN)) also have an el-
ementary tree representation: each goal corresponds to a tree where the goal is the only
node, such as in Fig 7. Elementary trees are joined together to make derivation trees by
connecting the root of one elementary tree onto the leaf of another and declaring an equality
constraint between the atomic formulae which label these two nodes. Only leaves labelled
with atomic formulae, not those labelled B, can have trees joined to them.

k([a, b, c], BN)

Figure 7: A single-node elementary tree corresponding to the goal k([a,b,c],BN).

For example, Fig 8 shows the derivation tree produced by joining the elementary trees of
Figs 6 and 7. Note that variables are renamed (‘standardised apart’) to prevent accidental
equalities. Derivation trees with a goal at the root node represent states in the search for a
proof of that goal. The tree in Fig 8 represents the state that is reached after choosing the
rule in Fig 6 as the first rule in the search for a proof for k([a, b, c], BN).

k([a, b, c], BN) k([a,b,c],BN)

k([RV1|RVs1], BN1)

k([b,c],TBN1) e([b,c],a,TBN1,BN) nc (BN)

k(RVs1,TBN1) e(RVs1,RV1,TBN1,BN1) nc(BN1)

Figure 8: LHS: Derivation tree produced by combining the elementary trees of Figs 6 and
7. Note the variable renaming. RHS: Simplified version of this tree.

A derivation tree all of whose leaves are labelled by B is said to be complete. Complete
derivation trees are also called proof trees. Proof trees cannot be further extended, so they
represent the termination of a proof search. If the set of equations in a derivation tree have
a solution, then the tree is consistent, otherwise it is inconsistent. Only consistent proof
trees represent successful proofs; inconsistent ones represent ‘failed proofs’.

One strategy to finding proofs is to build a complete proof tree, and only then check
whether the equations it contains are soluble. Clearly this can be highly inefficient: it is
much better to check for solubility as the tree is built, stopping the construction of the
tree if the current set of equations is insoluble. The Prolog approach to doing this is to
simplify the set of equations after each extension of the derivation tree, thus facilitating
the detection of an insoluble set of equations. The RHS of Fig 8 shows how simplification
works. Note that the extension of the initial goal tree in Fig 7 to the derivation tree in
Fig 8 amounts to replacing one atomic goal with the three atomic goals at the leaves of
Fig 8. Each of these atomic goals has to be proved in the same way as the original goal:
by having a consistent proof tree built ‘underneath’ it. However, because the variables BN
and TBN1 are shared between the three goals there is a dependency between possible proof
trees for each of the three goals.

Consider next negated goals such as \+ select(Y<-_Z,BN,_) in Fig 4. A consistent
proof tree with a negated goal \+ Goal exists if and only if it can be established that there
is no consistent proof tree with Goal as its root. In this case the proof tree has only two

14

BAYESIAN LEARNING OF BAYESIAN NETWORKS

nodes: the root \+ select(Y<-_Z,BN,_) and a single leaf B. Note that no variables in a
negated goal get instantiated.

It may be useful for some readers to compare proof trees to the more standard account
of proof construction for logic programs in terms of SLD-resolution. In SLD-resolution to
prove a formula such as k([a, b, c|, BN), the negation —k([a, b, c|, BN) is asserted (the initial
goal) and an attempt to prove a contradiction is made. Standard SLD-resolution selects the
leftmost atom from the current goal, unifies it with the head of a clause and replaces the
selected atom with the body of that clause. It at any point the empty goal is produced then
a contradiction has been established. The connection with proof trees is simple: replacing
the selected atom with a clause body is like joining an elementary tree; the current goal
is just the set of non-M leaves; the selected atom of the current goal will be the deepest,
leftmost leaf; a complete tree (all leaves M) corresponds to producing the empty goal.

Prolog execution (at least conceptually) consists of interleaving steps of tree extension
and equation simplification. As previously mentioned, in standard Prolog, the tree is always
extended by attaching an elementary tree to the deepest, leftmost non-H leaf. Call the
atomic formula at this leaf the selected atom. Generally, there will be several elementary
trees available. This creates what is known as a choice-point which is simply an ordered set
of possible elementary trees. In standard Prolog the ordering of elementary trees is fixed
by the lexical ordering of the corresponding clause in the Prolog source file.

Upon the creation of a choice-point the first tree in the ordering is used and then removed
from the choice-point. If at any stage an inconsistent derivation tree is produced, then the
process backtracks to the most recent non-empty choice point and uses the first elementary
tree in the choice-point (this tree is then removed from the choice-point). The process of
backtracking to non-empty choice points and removing trees from choice-points means it is
possible to backtrack all the way back to the first choice-point created.

The trees in Figs 7 and 8 show the first two stages in the construction of a proof
tree for the goal k([a, b, c], BN). For reasons of space we will not show all the sub-
sequent stages, but one intermediate stage is shown in Fig 9 and the final stage is the
consistent proof tree shown in Fig 10. This last tree constitutes a proof that k([a,b,c],
[c<-a,b<-a,c<-b]) is true. We say that the consistent proof tree has yielded the atom
k([a,b,c], [c<-a,b<-a,c<-b]). Yielded atoms are initial goals with the instantiation
generated by the tree applied. The SLPs considered in this paper only every produce
ground yielded atoms.

3.3 Defining priors using stochastic logic programs

Having seen how logic programs are used to define model spaces, we now turn to how
stochastic logic programs (SLPs) can be used to define probability distributions over these
model spaces. The basic idea is very simple: parameters are added to a logic program so
that when a choice-point is created an elementary tree is chosen according to a probability
distribution determined by the parameters, rather than deterministically as in standard
Prolog execution. This determines a distribution over consistent proof trees for any given
initial goal and thus a distribution over instantiations of any variables in that initial goal.

There are number of different ways of doing this, three of which were discussed by
Cussens (2000). In this paper, we opt for an approach named backtrackable sampling, which

15

ANGELOPOULOS AND CUSSENS

k([a,b,c], BN)

k([b,c], [c<-b]) e([b,c],a, [c<-b],BN) nc (BN)

|
e([c],a, [b<-a,c<-b],BN)

k([c], [e([c],b, [1, [c<-b]) nc([c<-bl)
| _
e([1,b, [c<-b], [c<-b]) u
.
k([,00) e(d,c, [, nc (1)
| | _
|] |

Figure 9: The lexically first recursive e/4 clause is used, a is chosen to be a parent of b.
The selected atom is now e([c],a, [b<-a,c<-b],BN). A choice point is created
since there are alternative elementary trees (= clauses) for this atom.

k([a,b,c], [c<-a,b<-a,c<-b]l)

k([b,c], [c<-b]) e([b,c],a, [c<-b], [c<-a,b<-a,c<-b]) nc([c<-a,b<-a,c<-b])

_

|
e([c],a, [b<-a,c<-b], [c<-a,b<-a,c<-b]) [|

[c<-a,b<-a,c<-b], [c<-a,b<-a,c<-b])

k(e , [e(lcl,b, [, [c<-b]) nc([e<-b]) W
| —_
e([1,b, [c<-b], [c<-b])]
n
k([0 e(l,c, 01,01 nc(lD)
| | _
m n]

Figure 10: At this point nc([c<-a,b<-a,c<-b]) is proved to be true, but the relevant
proof sub-tree has been omitted. This is a consistent proof tree proving that
k([a,b,c], [c<-a,b<-a,c<-Db]) is true.

16

BAYESIAN LEARNING OF BAYESIAN NETWORKS

is similar in spirit to that given in the original paper by Muggleton (1996). Backtrackable
sampling was introduced by Cussens (2000) where it is contrasted with using SLPs to
define log-linear distributions. It is important to realise that backtrackable sampling does
not define a log-linear model, in contrast with the sampling approach analysed by Cussens
(2001) which did not permit backtracking.

Backtrackable sampling permits us to use a very generalised form of SLP. Not all clauses
need to be parameterised, so the SLPs are impure, and any parameters need only to be
non-negative, so that the SLPs are unnormalised. We will begin our presentation with
unextended SLPs leading to the simple formal definition in Definition 1.

Definition 1 An unextended, impure, unnormalised stochastic logic program is a logic
program where some clauses are annotated with non-negative numbers. A clause C' anno-
tated with p is represented by p :: C. For each predicate in such an SLP, either all the
clauses making up its definition are parameterised or mone are. Predicates of the former
sort are called probabilistic predicates.

It remains to state how these clause parameters determine a distribution over consis-
tent proof trees for any given initial goal. The distribution is determined by a sampling
mechanism for consistent proof trees which we now define.

Definition 2 Backtrackable sampling for unextended, impure, unnormalised stochastic logic
programs produces a distribution over consistent proof trees for an initial goal as follows.
Backtrackable sampling is identical to the standard Prolog construction of a proof tree except
that elementary trees are chosen probabilistically from non-empty choice points when the
predicate symbol of the selected atom is probabilistic. If T1,Ts,...T, is such a choice point
and p1 :: C1,p2 :: Cy,...py 2 Cy is the corresponding set of annotated clauses, then tree T;
is selected with probability p;/ Z;-L:lpj. (Note that these probabilities are independent of the
ordering of the elementary trees.)

Definition 3 A distribution over consistent proof trees Piee (for a given initial goal Gy) de-
fines a distribution Puyom over yielded atoms Go8 as follows. For any atom Gob, Patom(Gof) =

E{t:t yields Goo} Prree(t)

It is because selection probabilities are defined by the quotient p;/ Z?:l pj that there is
no need for the parameters for a particular predicate to be normalised, i.e. to sum to one.
However, in our examples we will use normalised SLPs since there is no reason not to. Note
that the set of possible trees at a choice point is reduced if backtracking back to that choice
point occurs. This is because the ‘guilty’ elementary tree (= clause) is no longer a possible
choice. This means that the denominator in p;/ Z;LZI pj will be reduced. If only one tree
is left at a choice point then it is chosen with probability one.

For a given SLP and initial goal, it is possible to characterise backtrackable sampling
for SLPs as a Markov chain. Each state of the Markov chain is a derivation tree together
with the current choice point for every node in the tree. We will call these states augmented
derivation trees. Augmented derivation trees are nothing more than representations of
the internal state of a Prolog program as it executes. The initial state (with probability
one) is the one-node derivation tree whose single node is the initial goal with a choice

17

ANGELOPOULOS AND CUSSENS

point containing all elementary trees whose root node matches the predicate symbol of the
initial goal. If the selected atom of the current augmented derivation tree (= state) is non-
probabilistic then with probability 1 it is extended with the next available elementary tree, if
any, according to the standard Prolog lexical ordering. If the selected atom is probabilistic,
then for the unextended SLPs we are currently considering, the selected elementary tree is
chosen as specified in Definition 2. If an inconsistent tree is produced or if we run out of
elementary trees for a particular choice-point then with probability 1 the chain backtracks
to the most recent non-empty choice-point as previously described. We can use the usual
trick of making ‘final’ states, which here are consistent proof trees, into absorbing states.
Once we hit a consistent proof tree the chain remains stuck there for ever. For non-trivial
SLPs the state space of this Markov chain is very large, but since both it and the relevant
transition probabilities are defined in a compact manner it is still a usable representation.

If any sequence of probabilistic choices leads to a consistent proof tree without back-
tracking, then the SLP is said to be failure-free. Our first example SLP, in Fig 11 is clearly
failure-free; it is a simple tabular representation of a discrete probability distribution for
the model space defined by its underlying logic program (which is given in Fig 1).

.40 :: k([a<-[],b<-[al,c<-[bl]).
.15 :: k([a<-[],b<-[a,c],c<-[11).
.15 :: k([a<-[1,b<-[al,c<-[11).
.15 :: k([a<-[b],b<-[c],c<-[11).
.15 :: k([a<-[],b<-[],c<-[11).

O O O O O

Figure 11: A failure-free SLP defining a prior distribution over a very small space of BNs.

Our next example SLP is produced by replacing the definition of connected/4 in Fig 2
with:

0.6 :: connected(Pa, RV, TailBN, [Pa<-RV|TailBN]). % connect
0.4 :: connected(_NoPa, RV, BN, BN). % don’t connect

The SLP so produced is not formally failure-free, since a naive underlying Prolog interpreter
might, for example, select the first edges/4 clause when the first argument of the selected
atom is a non-empty list. This would produce an inconsistent tree (a unification failure) and
backtracking would be invoked to try (successfully) the other edges/4 clause. A smarter
system would use indexing to avoid this. This is just a question of the efficiency of sampling,
the same distribution over consistent proof trees is defined in both cases.

Failure-free SLP priors are efficient to sample from (since each clause choice constitutes
progress towards a successful proof) and have a simple mathematical characterisation. They
are essentially equivalent to stochastic context-free grammars with predicates playing the
role of grammar non-terminals. For the unextended SLPs we have seen so far, the sequence
of probabilistic choices made in building a consistent proof tree for a failure-free SLP is
simply a joint instantiation of a sequence of independent random variables—each individual
random variable having a multinomial distribution specifying which clause to choose for a
probabilistic predicate.

18

BAYESIAN LEARNING OF BAYESIAN NETWORKS

We next consider a more complex SLP which is produced by replacing the definition of
edges/4 in Fig 4 with:

edges([],_RV,BN,BN). % finished
edges ([H|T],RV,BNIn,BNQut) :-
p_edges([H|T] ,RV,BNIn,BNOut) .

0.3 :: p_edges([H|T],RV,TailBN,BN) :- 7% RV parent of H
edges (T,RV, [H<-RV|TailBN] ,BN).
0.2 :: p_edges([H|T],RV,TailBN,BN) :- % RV child of H

edges(T,RV, [RV<-H|TailBN],BN).
0.5 :: p_edges([_H|T],RV,TailBN,BN) :- % no direct connection
edges(T,RV,TailBN,BN).

We have shown how for the logic program of Fig 4 the standard Prolog approach would
build a consistent proof tree for the goal k([a,b,c], BN) in Figs 8-10. We now consider
how backtrackable sampling works for its probabilistic version.

Note that our SLP has two predicates: edges/4 and p_edges/4 where its corresponding
logic program in Fig 4 had only one: edges/4. This is to cleanly separate the entirely
deterministic question of whether there remain nodes to consider connecting to the ‘current’
node RV from the probabilistic issue of what sort of connection to make. To cut down on the
size of the derivation trees we are about to show we will informally pretend, when presenting
these trees, that there is only one ‘edges’ predicate in our SLP, which, moreover, we will
abbreviate to e/4.

Suppose that, as chance would have it, the lexically first recursive p_edges/4 clause had
been probabilistically chosen for the first two choice points, just as if normal deterministic
Prolog execution were being used. The derivation tree would then be the one shown in
Fig 9. The selected atom at this point is edges([c],a, [b<-a,c<-b],BN)—abbreviated
to e([c],a, [b<-a,c<-b],BN)—and a choice point is created since there is a choice of 3
p-edges /4 clauses. Suppose that the elementary tree corresponding to the second p_edges/4
clause is probabilistically chosen. This produces the derivation tree shown in Fig 12. The
procedure would then (deterministically) use the base edges/4 clause to produce the tree
in Fig 13.

The tree in Fig 13 is not inconsistent itself, but it has no consistent complete extension
because nc([a<-c,b<-a,c<-b]) is not true and thus cannot be proved. We will not detail
the relevant proof steps since there is no probabilistic element. Suffice to say that once the
unprovability of nc([a<-c,b<-a,c<-b]) has been established, our sampling mechanism
will backtrack to the most recent choice point which is the tree in Fig 9, but with the
‘guilty’ second recursive clause now removed from the choice point. Suppose that this time,
the third p_edges/4 clause is probabilistically chosen, then the derivation tree in Fig 14 is
the result. This tree will then be deterministically extended to the consistent proof tree in
Fig 15 without any further backtracking.

3.4 Extended SLPs

It is not difficult to see that the state transition probabilities of the Markov chain associ-
ated with an unextended SLP depend only on the predicate symbol of the selected atom

19

ANGELOPOULOS AND CUSSENS

k([a,b,c], BN)

k([b,cl, [c<-b]) e([b,cl,a, [c<-b],BN) nc (BN)
|
e([c],a, [b<-a,c<-b],BN)

|
],a, [a<-c,b<-a,c<-b],BN)

k([c], [1) e([cl,b,], [c<-b]) nc([c<-bl)
| _
e([],b, [c<-b], [c<-b]) u
|
k([1,01) e(l,c,01,[D nc([]1) u
| | _—
| [| |

Figure 12: Probabilistically choose ¢ to be the parent of a

k([a,b,c], [a<-c,b<-a,c<-b]l)

k([b,c], [c<-b]) e([b,c],a, [c<-b], [a<-c,b<-a,c<-b]) nc([a<k-c,b<-a,c<-b])

e([c],a, [b<-a,c<-b], [a<-c,b<-a,c<-b])
e([l,a

a<-c,b<-a,c<-b], [a<-c,b<-a,c<-b])

|
k([c], D e([c],b, [1, [c<-b]) nc(fc<-b]) MW

| —_
e([1,b, [c<-b], [c<-b]) u
"
k([,00) e(d,c, [, nc (1)
| | _
| | |

Figure 13: An incomplete derivation tree which cannot be extended to a consistent proof
tree, since nc([a<-c,b<-a,c<-b]) is not true. The backtrackable sampling
mechanism will thus eventually backtrack to the most recent choice point, which
is Fig 9.

20

BAYESIAN LEARNING OF BAYESIAN NETWORKS

k([a,b,c], BN)

k([b,cl, [c<-b]) e([b,c],a, [c<-b],BN) nc (BN)
|
e([c],a, [b<-a,c<-b],BN)

|
e([1,a, [b<-a,c<-b],BN)

k([c], [1) e([cl,b,], [c<-b]) nc([c<-bl)
| P
e([1,b, [c<-b]l, [c<-b]) |
|
k([1,01) e(l,c,01,[D nc([1) u
| | _
| [| |

Figure 14: Probabilistically choose ¢ not to connect to a

k([a,b,c], [b<-a,c<-bl)

k([b,c], [c<-b]) e([b,cl,a, [c<-b], [b<-a,c<-b]) nc([b<-a,c<-b]l)
| —_—
e([c],a, [b<-a,c<-b], [b<-a,c<-b]) |]

|
([1,a, [b<-a,c<-b], [b<-a,c<-b])

k(LeT,) e(fc],b, [, [c<-b]) nc(fe<-b]) M
o([1,b, [e<b] , [e<-b]) w
k(17 e(¢, 1, [1) el .
=)

Figure 15: A consistent proof tree proving that k([a,b,c], [b<-a,c<-b])

21

ANGELOPOULOS AND CUSSENS

and which clauses, if any, have been removed from the choice-point corresponding to this
selected atom. Sometimes this is not fine-grained enough. FEztended SLPs (Angelopoulos
and Cussens, 2004b), in contrast, permit a much greater range of transition probabilities to
be used. We introduce extended SLPs by way of a simple example in Fig 16.

:- pvars(umember (_El,List), [L-(length(List, L),L>0)]).

1/L :: [L] :: umember(E1, [E1l|T]).
1 - (/L) :: [L] :: umember(E1, [_IT]) :- [L-1] :: umember(E1, T).

Figure 16: An extended SLP for selecting uniformly from a list.

The basic idea behind umember/2 in Fig 16 is that the probability with which each
element (first argument) is picked from a list (second argument) should be uniform. To
achieve this, when umember (E1,List) is the selected atom the pvars/2 directive is called
and length(List, L),L>0 is used to compute the list length L. The value L is then used
to dynamically compute the probabilities for the two umember/2 clauses via the expressions
1/L and 1 - (1/L). It is easy to see (by induction) that this procedure defines a uniform
distribution over members of the list.

In general, the first argument for directive pvars/2 is an atom corresponding to a prob-
abilistic predicate while the second one is a list of pairs. Each member in the list connects
a variable (e.g. L) to its guard (e.g. (length(List, L),L>0)). The syntax for defining
probabilistic clauses is extended to, Expr: :List: :Clause. Expr is an arithmetic expression
containing some of the variables from List. List is a list of variables, each of which corre-
sponds to one item in the second argument of the relevant pvars/2 directive. Clause is a
standard clause. Note that the recursive call in our example is [= 1]::umember(E1, T
). Since the length of tail T can be computed from that of [HIT], recursive calls can avoid
calling length/2. In the example, this is achieved by attaching the evaluable expression
L - 1 to the recursive call. In general a goal corresponding to a probabilistic call can be
either of the form Head or of the form Exprs::Head. With Exprs being a list of evaluable
expressions and variables. When the call is of the form Head or when a variable is found in
Exprs, the relevant guards from pvars/2 are called. Otherwise, the expressions in Exprs
are evaluated.

The basic rule for using extended SLPs is that the SLP must be written in such a
way that selected atoms contain sufficient information to enable computation of the desired
probabilities. In this paper we will not attempt to characterise which probability distribu-
tions can be represented by extended SLPs, leaving this for future work. So far, we have
only used extended SLPs for simple utility predicates, similar to umember/2.

4. MCMUC for posterior distributions over large finite spaces

This section does not contain a tutorial on Markov chains or on MCMC. The bare minimum
required to understand our particular approach and to fix notation is provided. Good
introductions to finite Markov chains are provided by Feller (1950) and Héggstrom (2002).

22

BAYESIAN LEARNING OF BAYESIAN NETWORKS

For an introduction to MCMC from a machine learning perspective see Andrieu et al. (2003)
and for a statistical perspective see Robert and Casella (2004).

4.1 MCMC basics

Let X be a finite set, and let m be some probability distribution over X. Suppose we wish to
sample from 7 but this is difficult to do directly. The Markov chain Monte Carlo (MCMC)
solution to this problem is to construct a Markov chain to indirectly produce an approx-
imate sample from 7. Restricting to the homogenous case as we will do throughout, a
Markov chain on X is defined by an initial distribution ug on X and transition probabilities
P(z,y) for all x,y € X. Elements of X can be viewed as states: intuitively P(x,y) is the
probability of ‘moving’ from state x to state y. The Markov chain provides a distribution
over infinite state sequences. Let X; be the state at (discrete) time ¢, then the transi-
tion probabilities determine all the necessary conditional probabilities via this conditional
independence relation:

P(X; =y|Xo=20,... X4-1 =2) = P(X; = y|Xy—1 = 2) = P(z,y) t=1,2,... (4

Markov chains are thus memoryless: the probability of moving to any given state de-
pends only on the current state. Let u; represent the (marginal) probability distribution
on X; defined by the Markov chain. Since X is finite the transition probabilities can be
arranged in a transition matrix P such that entry P;; of P is the probability of moving from
state number i to state number j according to some arbitrary enumeration of the elements
(=states) of X. We then have u; = ugP?, where ug and p; are row-vectors of length |X].

If 7 is the distribution from which we wish to sample, the MCMC approach is to con-
struct a Markov chain such that ||u; — 7|| — 0 as t — oo. For sufficiently large ¢, samples
drawn from X; will provide a good approximation to sampling from 7. This convergence
implies that 7P = . « is thus a stationary distribution for the chain.

4.2 The Metropolis-Hastings algorithm

Throughout we will restrict attention to posterior distributions 7, where each = € X" repre-
sents a particular statistical model in some model space. Note that in this paper, attention
is restricted to Bayesian network models, but that much of what follows is of general appli-
cation. We have that 7(z) o< L(x)mg(x) where L(z) is the likelihood associated with x for
some fixed set of observed data, and where my(x) is the prior probability of x.

In this paper each BN z € X is unparameterised: no conditional probabilities are
specified. Tt follows that the likelihood L(x) must be a marginal likelihood: we integrate over
possible parameter values rather than specify particular values. This integration requires
the definition of prior density functions and we adopt the entirely standard approach of
requiring these to be Dirichlet distributions. For the details of this approach see Heckerman
et al. (1995b). If various independence assumptions are made about the joint distribution
over parameters we have, for any BN x € X:

L(x) = H 1—1 . I'(cvj) H F(nf‘?‘(kazljijk) 5)

ANGELOPOULOS AND CUSSENS

where 7 is a node in the BN, j is a joint instantiation of the parents of such a node in x and k
is a value of the node. n,j;, is the data count of node i having value k when its parents have
configuration j. ;i is the corresponding Dirichlet parameter. Finally, ni; = > % nijk
and a;; = Y ;' k. In our experiments we have set o = N/(r3¢;), V1, j, k where N (the
prior precision) has either been N = 1 or N = 10. For either value of N, the marginal
likelihood function is an instance of the BDeu metric for scoring BN structures. This metric
respects likelihood equivalence: BN structures encoding the same conditional independence
relations (Markov equivalent structures) will get the same score. The BDeu metric was
introduced by Buntine (1991) and was given this name by Heckerman et al. (1995b) who
showed it was a special case of a more general likelihood-equivalent metric, the BDe metric.

The central assumption of our method is that, although 7 is hard to sample from, mg, or
distributions closely related to 7, are easy to sample from. We do not assume that mg(x)
is easy to evaluate for any given z € X, so our method is particularly well-suited to prior
distributions which are directly defined in terms of some sampling mechanism, as opposed
to some closed form.

We use the Metropolis-Hastings algorithm to construct a chain with 7 as stationary
distribution. This algorithm defines a Markov chain using an auxiliary proposal distribution
q as follows. If X; = z, then propose a new state y according to the proposal distribution
q(y|z). This restricts ¢ to be such that values can be readily sampled from the conditional
distributions ¢(.|x),z € X. Next compute an acceptance probability a(z,y) as defined by

v (v) a(ely)
. ™Y) g\T|Yy
a(x,y) = min {— , 1} (6)
() q(y|z)
and accept the proposed y with probability a(x,y). If the proposal is rejected then the
chain remains at state z. Under weak conditions such a Markov chain converges to 7.
We now consider proposals for which the acceptance probability is particularly easy to
compute. Suppose the proposal g is related to the prior as follows:

7'('()(1‘)

mo(y)

where R,(z,y) is some function which is easy to evaluate for any x,y € X. Whenever (7)
is satisfied we have:

q(zly)mo(y)
q(y|z)mo(x)

= Ry(z,y) & Ry(z,y) = z,ye X (7)

— i J TWa(zly)
oo = wmin{ ZERCH 1))

So if (7) holds then the acceptance probability reduces to a likelihood ratio multiplied
by the easily-evaluable R,(x,y). In this case, we do not need to be able to evaluate any
other functions, in particular we do not need to be able to evaluate the prior or the proposal
distribution.

24

BAYESIAN LEARNING OF BAYESIAN NETWORKS

4.2.1 THE SINGLE-COMPONENT METROPOLIS-HASTINGS ALGORITHM

The ordered single-component Metropolis-Hastings algorithm is a variant which is applica-
ble when models z € X can be divided into components x = {z1,z9,...2,}. The details
are given by (Gilks et al., 1996, p. 10) from whom we extract a brief description. Let z¢;
denote the state of x; at time t. Iteration ¢+ 1 is done in n steps. Candidate ¥ ; is proposed
by ¢i(y.i|Ti.s, v,—;) where

Tt,—5 = ($t+1,1, co sy Tt1,i—1y Tt g1y - - fUt,n)

so the proposal is conditional on the already-found new components of x for earlier compo-
nents and the existing later components. Each proposed y ; is accepted with probability:

a; = min { T(y.ilr—i)gi(z.ily.i ©.—) 7 1}
(2l) (y.ilzs, x.—)

Ordered Gibbs sampling is a special case where ¢;(y.i|z.;,x —;) = m(y.i|z.—;), the proposal
distributions are the full conditional posterior distributions, so that a; = 1. If conditional
posterior distributions are not available to serve as proposals, but conditional prior distri-
butions are, we can set ¢;(y.;|,x.—;) = mo(y.;|z.—;) in which case:

- :mm{%1} (9)

Call this algorithm the ordered prior-Gibbs sampler. In our case, due to the decomposability
of the marginal likelihood, the likelihood ratio in (9) reduces to L;(y. ;)/Li(x_;) where L;
is the component of the likelihood associated with variable ¢. This cheaply computable
acceptance probability is a big advantage for prior-Gibbs sampling.

Note that the Gibbs (resp. prior-Gibbs) sampler requires proposal distributions only
for the n full conditional posterior (resp. prior) distributions. It follows that the posterior
(resp. prior) need only be specified implicitly by these conditional distributions. However
in a number of applications it has been found practical to use an MCMC algorithm in all
respects like the ordered Gibbs sampler except that the n distributions used for sampling
are inconsistent: there is no joint distribution for which they are full conditional distribu-
tions. Following Heckerman et al. (2000) we will call such a procedure ordered pseudo-Gibbs
sampling.

As Gelman points out:

This “ordered pseudo-Gibbs sampler” (Heckerman, Chickering, Meek, Roun-
thwaite, and Kadie 2001) is a Markov chain algorithm, and if the values of the
parameters are recorded at the end of each loop of iterations, then they will con-
verge to a distribution. This distribution may be inconsistent with various of the
conditional distributions used in its implementation, but in general there will
be convergence to something (assuming that the usual conditions hold for con-
vergence of a Markov chain to a unique nondegenerate stationary distribution).
(Gelman, 2004) [emphasis in the original]

Gelman notes that the inconsistency is a “theoretical flaw” but argues that in compen-
sation “Conditional modeling allows enormous flexibility in dealing with practical problems.

25

ANGELOPOULOS AND CUSSENS

In applied work, we have never been able to fit the joint models to a real dataset without
making drastic simplifications.” One interesting example of using inconsistent conditional
distributions is the PHASE algorithm for haplotype reconstruction whose authors describe
it as follows:

Indeed, the algorithm implemented in PHASE was not actually developed
in the conventional way of writing down a prior and likelihood and then devel-
oping a computational method for sampling from the corresponding posterior
(and neither, incidentally, was the algorithm of Lin et al. [2002]). Rather,
the posterior is defined implicitly as the stationary distribution of a particular
Markov chain, which in turn is defined via a set of (inconsistent) conditional
distributions. (Stephens and Donelly, 2003)

Lauritzen and Richardson (2002) note that even if the pseudo-Gibbs sampler is guar-
anteed to have a stationary distribution, it may have “a limiting distribution depending
on the particular choice of ordering 7 in the sitewise updating” (Stephens and Donelly use
a randomised component updating scheme for PHASE to avoid this problem.) They add
that “it would be desirable to have a more precise understanding of the general relation be-
tween the limiting distribution p of a stationary pseudo-Gibbs sampler and the conditional
specifications ¢.”

In this paper we use pseudo-prior-Gibbs sampling which is like prior-Gibbs sampling
except that the proposals may be inconsistent: there may be no prior distribution for
which they are conditional distributions. Much of what has been said about pseudo-Gibbs
sampling applies to pseudo-prior-Gibbs sampling: it is an approximation to the theoretically
sound prior-Gibbs sampling which works well in practice. When the proposals closely
approximate proper conditional priors then we can expect a reasonable approximation but
we lack a precise understanding of the nature of this approximation.

4.3 Metropolis-Hastings with SLPs

In this paper we implement the Metropolis-Hastings algorithm using SLPs. The prior 7q is
expressed by an SLP. The state space X is the set of consistent proof trees constructed from
the SLP and a given user-supplied goal. Examples of consistent proof trees can be found
in Figs 10 and 15. The proof tree in Fig 15 was sampled from the SLP version of Fig 4
using the initial goal k ([a,b,c], BN). As described in Section 3, SLPs define a distribution
over yielded atoms. Our SLP priors are written in such a way that there is exactly one
term in each yielded atom which represents a model—in this paper the model is a BN.
Call this term the model term. For example, the tree in Fig 15 generates the model term
[b<-a,c<-b] which represents the obvious BN structure. Each x € X thus has a likelihood
L(z) assuming a fixed set of training data. This is just the (marginal) likelihood of its
associated model. In the language of MCMC, the information provided by the proof tree
over and above the model term is an ‘auxiliary variable’: part of the state space for the
Markov chain but not part of the stationary distribution we are interested in. Naturally
only the model term is recorded as an MCMC run progresses.

It remains to choose a proposal: how to move between proof trees. The basic idea is
this: given a current proof tree z € X', a new one is proposed by deterministically deleting

26

BAYESIAN LEARNING OF BAYESIAN NETWORKS

part of z, thus producing a derivation tree 2’ and then using the prior 7y to probabilistically
re-grow x’ to produce a proposed y € X. Derivation trees x’ produced by deleting part of a
consistent proof tree are called backtrack points. We begin by more precisely characterising
backtrack points.

4.3.1 BACKTRACK POINTS

Recall, from Section 3, the way in which an SLP (and initial goal) define a procedure which
samples from the prior my. This procedure can be seen as the realisation of a Markov chain
whose states are augmented derivation trees.

For any consistent proof tree x € X and for any set of probabilistic atoms A in x let
bp(z, A) be the augmented derivation tree produced by deleting the trees under each a € A
and reinitialising the choice point for each a to include all possible elementary trees. bp(z, A)
is called a backtrack point for x. For example, Fig 9 is a backtrack point bp(x, A) where
x is the consistent proof tree in Fig 10 and A = {e([c],a, [b<-a,c<-b],BN),nc(BN)}.
The derivation tree given in Fig 17 is a backtrack point for the tree in Fig 10 where A =
{e([c],b, [],TBN1)}. An important difference between the backtrack points in Fig 9 and
Fig 17 is that the former must have been built at some stage in the construction of the
consistent proof tree in Fig 10, whereas the tree in Fig 17 could never be built as some
intermediary stage in the production of any consistent proof tree. This is because the SLP
sampling mechanism, which defines our prior, always builds trees depth-first left-first. In
Fig 17 the tree under e([c],b, []1,TBN1) is not constructed even though the tree to its
right has been constructed.

It is clear that backtrack points for any consistent proof tree are partitioned between
those like Fig 9 which we shall call chronological backtrack points and those like Fig 17
which we shall call non-chronological backtrack points. Chronological backtrack points are
so called since they can be reached from a consistent proof tree by ‘rewinding history’ to
reach a stage which must have occurred at some point in the construction of that consistent
proof tree.

k([a,b,c], [c<-a,b<-a|TBN1])

k([b,c],TBN1) e([b,c],a,TBN1, [c<-a,b<-a|TBN1])nc([c<-a,b<-a|TBN1])

_

|
e([cl,a, [b<-a, |TBN1], [c<-a,b<-a|TBN1]) |

|
<-a,b<-a|TBN1], [c<-a,b<-a|TBN1])
|

k([c], [D e([c],b, []1,TBNL) nc(TBN1) m
w
k([,00) e(d,c,0,[D nc (1)
| | _
|] |

Figure 17: Non-chronological backtrack point

27

ANGELOPOULOS AND CUSSENS

4.3.2 CHRONOLOGICAL BACKTRACKING PROPOSALS

Any given consistent proof tree x has a finite number of chronological backtrack points
which can be ordered chronologically. Let the number of chronological backtrack points
for a consistent proof tree x be called the depth of =, denoted d(z). (Note that this does
not agree with the usual definition of the ‘depth’ of a tree.) Let x1,2,...,74x) be the
chronological ordering of chronological backtrack points for x.2 For any k > d(z), define x},
to be z. It is now easy to define our first type of proposal.

Definition 4 For any positive integer k, the depth-k chronological backtracking proposal
qr is defined as follows. Let the current consistent proof tree be x € X. To propose a mew
consistent proof tree move to the backtrack point xj and use the SLP sampling mechanism
defining the prior to extend xy to a new consistent proof tree y. There will always be at least
one such consistent proof tree, namely x. (Note that if k > d(x) then x will be proposed.)

Proposition 5 Let q; denote the depth-k chronological backtracking proposal then Yk, mq :
Ry, (z,y) = Le(2|y)mo(y) m(y =1 and so

ar(ylz)mo (@)
g) = min { 721}

Proof Introducing an abuse of notation, for any augmented derivation trees z’,z” (not
necessarily consistent proof trees) let mg(x’) denote the probability that at some point the
SLP prior-sampling mechanism produces z’, and let mg(z”|2") denote the probability that
x' gets extended to 2”7 by the mechanism. In the construction of a consistent proof tree
x, all of x’s chronological backtrack points will be passed through. It follows that Vk €

{1, 2, ce d(l‘)} : 7['0(1‘) = Wo(xk)ﬂo(w‘xk).

By definition g (y|z) = mo(y|x). Soif xx = yk, then mo(x)qx (y|x) = mo(zk)mo(x|zkK)m0 (Y|2K) =

7o(yk)mo(xlyr)mo(ylyk) = mo(yr)mo(ylyr)mo(z|yr) = mo(y)ak(zly), and the result follows. If
x # yi then i (y|z) = qx(z|y) = 0, and a value for oy, (z,y) is never needed.

Fixed-depth backtracking is too fixed, much better is a proposal which sometimes makes
small jumps (big k) and sometimes big ones (small k). This leads to our next type of
proposal: chronological uniform choice qu.. Instead of using a fixed depth k£ to backtrack
to, k is chosen uniformly from {1,2,...,d(x)}. The acceptance probability is only slightly
harder to compute:

Proposition 6 Let q,. denote the chronological uniform choice backtracking proposal then
o : Ry, (w,y) = LU0 — (2 /d(y) and so

quc(y|z)mo (@)

= min MM
ol = min{ G5 751}

2. In previous work (Angelopoulos and Cussens, 2005a) we numbered backtrack points from 0. Numbering
from 1 makes some of the presentation clearer.

28

BAYESIAN LEARNING OF BAYESIAN NETWORKS

Proof Given z,y € X, let d(z,y) be the largest k such that z; = y;. Note that there is
always such a k since 1 = y1,Va,y € X. It is clear that if k' > d(z,y) then mo(y|lzy) =
mo(z|yr) = 0. From this and the definition of g,. we have the following equation:

770()Quc(y’x)
d(z)

-)3 i
d(z)

= ZT"O ylzk)

d(x,y

)
> mo(ylex)
(x) =

-

= mo(z)

QU

S0 70(2)que (y[2)d(w) = mo(x) St mo(ylwk)- Similarly, 70(y)que([y)d(y) = mo(y v) iy i o ().

However, Vk : 1 < k < d(z,y) : mo(x)mo(y|xr) = mo(y)mo(z|yx) from the proof of Propo-

sition 5. So mo(z) (:miy) mo(y|zk) = mo(y)zz(jiy) mo(x|yx) and thus 7o (x)que(y|z)d(z) =
70(Y)que(x|y)d(y). The result follows. [|

k
Z

4.3.3 NON-CHRONOLOGICAL BACKTRACKING PROPOSALS

In practice a big problem with chronological backtracking proposals is that to change the
tree under some probabilistic atom, it is necessary to destroy everything built later to
its right. Non-chronological backtracking avoids this problem. To define non-chronological
backtracking first note that every chronological backtrack point x; has an associated selected
probabilistic atom ag. Each such z; has an associated non-chronological backtracking point
zF which is just with the sub-tree under aj, deleted. Both z; and z* have the tree under
ay, deleted, the difference is that xj also has everything ‘to the right’ deleted.

Fixed-depth (qk) and uniform choice (¢*¢) non-chronological backtracking proposals are
like their chronological counterparts except that backtracking jumps to z* rather than xy.
(Note that chronological proposals are denoted using subscripts and non-chronological via
superscripts.) A tree is then built under aj, the selected atom of z* using the standard
sampling mechanism. Note that there is at least one consistent proof tree sampleable in
this fashion: namely x. In general, ¥ would never be reached when sampling normally
from the prior. Nonetheless we can use the prior-sampling mechanism to sample the tree
under ag, exactly as if it were any other selected atom.

In the general case, we do not (as yet) have expressions for acceptance probabilities
for non-chronological backtracking. We do, however, have easily computable acceptance
probabilities in an important special case. To define this special case, consider first the
following sampling mechanism defining a different prior 776C over consistent proof trees. Until
the kth choice point is created proceed as for mg. If and when the kth choice point is created
then, instead of building a tree under the atom ay, that atom is frozen (to use the language of
logic programming): the next available atom is instead selected, using the normal selection

29

ANGELOPOULOS AND CUSSENS

ordering for atoms. Indeed atom aj is only selected when no other atom is available for
selection: in short the tree under ay is built last. We now define 776“ formally.

Definition 7 This equation defines nf: Vo € X : 7k (z) = mo(wg)mo (¥ |24 m0 (2|2¥), where
x, is the kth chronological backtrack point, =¥ is the kth non-chronological backtrack point
and o(z¥|xy) denotes the probability of extending xy to x* by freezing the atom ap and
probabilistically extending xy, ‘to the right’ of ay.

In general o # 7§ If we build the tree under ay, first (as normal) then this may produce
variable bindings on atoms to be selected later thus constraining which subtrees can be built
under them. These variable bindings will not be there if the tree under aj is delayed until
the end of the process. When 7 does equal Wé“ we have the following useful result.

Proposition 8 If mg = n§ then Y,y € X : mo(2)¢" (y|z) = mo(y)q"(xy).

Proof If 2% # y* then ¢*(y|x) = ¢*(x|y) = 0 and the result follows, so we consider the

case where zF = y*. In this case we clearly also have z; = yj

mo(2)¢" (ylx)
= mo(xp)mo(aF|zy)mo(2]2*)mo (y|2F) by definitions
= mo(y)mo(y* lyr)mo(a|2*)mo(y[a*) from above
= 7o(y)q"(x|y) by definitions

From Proposition 8 it follows immediately that if 79 = 7§ then Rye(w,y) = 1. If
7o = w§ for all k then (by a small alteration to the proof of Proposition 6) we also have that
Ryue(z,y) = d(z)/d(y). In some of the experiments where we have used non-chronological
backtracking we have ensured that g = wg for all values of & which can ever be selected
and so we can use these simple acceptance probabilities. This is the case when the BN
structure prior defined by the SLP is modular (see Section 2.2.1).

4.3.4 BACKTRACKING PROPOSALS AND SINGLE-COMPONENT MCMC

Restricting to modular priors runs counter to our goal of allowing the user to define priors
which encapsulate whatever prior knowledge there is. So we have also done experiments
using non-chronological backtracking with non-modular priors (so that mg # 7&). This
amounts to pseudo-prior-Gibbs sampling for the following reasons.

It is not difficult to see that all the backtracking proposals implement variants of the
prior-Gibbs sampler. Each proof sub-tree that is pruned and resampled using the prior can
be viewed as a ‘component’ of the entire proof tree. These components form a hierarchy
rather than a flat sequence as in normal single-component sampling. In the case of chrono-
logical backtracking a block of components is resampled. If the backtracking is fixed-depth
then the same component (or block of components) is always selected; if uniform-choice the
choice of component is randomised.

30

BAYESIAN LEARNING OF BAYESIAN NETWORKS

When using pseudo-prior-Gibbs sampling, in step i we propose a new set of parents for
node i by pruning the proof sub-tree which determines its current parents and resampling
using the SLP prior mechanism as previously described for non-chronological backtracking.
With the exception of the last node, proposing like this only approximates proposing via the
conditional prior. However, since the underlying logic program is the same, at least we have
that zero prior probability models are never proposed (and hence have posterior probability
zero). This is a partial explanation for the good results this approach has yielded. We
denote our pseudo-prior-Gibbs sampler by ¢*¢.

Note that to effect this approach we need to restrict the number of available backtrack
points to be only those that correspond to choosing a whole new parent set for a node. In
our current implementation this restriction is achieved via a directive like:

:— s_no_bpoint (choose_pa/3).

which states that backtracking should ignore all backtrack points where the selected atom
has choose_pa/3 as its predicate symbol.

4.3.5 IMPLEMENTATION

We will give just a brief overview of how MCMC with SLPs is actually implemented: further
details are available from (Angelopoulos and Cussens, 2005b). The prior 7 is defined in a
SLP source file. To sample from the prior 7y defined by this SLP a call can be made to bn/4
with the first three variables instantiated. When the call returns (i.e. when a consistent
proof tree has been constructed), the fourth argument will be instantiated to a first-order
term representing the sample BN.

Source SLPs are transformed to normal Prolog programs and loaded into memory. Each
clause is augmented by extra arguments carrying the probabilistic labels and a path of (prob-
abilistic) backtracking points. The latter is used both for choosing a proposal backtrack
point and for speeding the process of finding the proposed model. Prolog’s own backtrack-
ing which implements a left to right search, is used when sampling. At each iteration after
the current model has been reached we need to backtrack to the chosen (proposal) back-
track point. Prolog’s search strategy cannot be used effectively for backtracking to the
proposal point, instead this is achieved by rerunning the original top level query with its
path argument partially instantiated.

A proposal strategy has two components. Firstly, it has a path of backtrack points.
Secondly, it has a function for choosing one of the points in the path. The latter is controlled
by an experimental parameter. In all proposals described here, except pseudo-prior-Gibbs
sampling, a point is picked uniformly from those in the path. Subpaths can also be created
which allow non-chronological backtracking. If a point in a subpath is chosen, all points
not in the subpath are assumed independent to those in the subpath and it is unaffected by
the transition from the current model to the proposed one. In effect, this allows changes to
a part of the model which are independent of other subparts.

5. Experimental setup

Since the goal of our experiments is to test our MCMC system rather than to perform
Bayesian inference for some particular application, all our experiments are done using syn-

31

ANGELOPOULOS AND CUSSENS

‘ BN ‘ Nodes ‘ Arcs ‘ Ref ‘
ASTA 8 8 | Lauritzen and Spiegelhalter (1988)
ALARM 37 46 | Beinlich et al. (1989)
HAILFINDER 56 66 | Abramson et al. (1996)
INSURANCE 27 52 | Binder et al. (1997)

PARITY1 22 31 | Koivisto and Sood (2004)
PARITY?2 100 53 | Koivisto and Sood (2004)

Table 1: True BNs

thetic data. In each experiment a known fully parameterised Bayesian network (TrueBN)
is chosen and a specified number (Size) of complete joint instantiations are generated from
TrueBN by forward sampling. This constitutes the data for an experiment. Next an SLP
prior (SLPPrior), prior precision for the Dirichlet parameters (N) and proposal (Proposal) are
selected. Using the selected data, prior and proposal the Metropolis-Hastings algorithm is
run for 250,000 iterations with a record of all visited BNs and their marginal log-likelihoods
recorded. Each such run is done three times with three different random seeds. Size was
either 500 or 1000. N was either 1 or 10. The following three sections describe each of the
other experimental variables (TrueBN, SLPPrior and Proposal) in more detail.

5.1 True Bayesian networks

Six different BNs were used to generate synthetic data: ASTA, ALARM, HAILFINDER,
INSURANCE, PARITY1 and PARITY2. Their sizes are given in Table 1 which also cites
the original references which provide further information on them. The six values for TrueBN
were chosen to give a range of structure size and topology, and because each had been used
at least once in previous (non-Bayesian) BN structure learning work.

5.2 Prior distributions

In total 6 prior distributions were used with differing levels of information about the true
BN. For all of our 6 priors, any BN with a topological ordering conflicting with that of the
true BN has zero prior probability. The priors are listed below where we have indicated
whether each is modular (see Section 2.2.1).

Prior A In this prior a consistent topological ordering is enforced: a node A can only be a
parent of a node B if A comes before B in a particular (arbitrary) topological ordering
of the nodes in the true BN. If A is a possible parent for B, then P(A — B € BN) =
1/2, for all A, B. MODULAR

Prior B The topological ordering constraint is imposed as for Prior A. For any node B,
let |Pa(B)| be the number of parents B has in the true BN. If A is a possible parent
for B, then P(A — B € BN) |Pa(B)|, for all A, B. MODULAR

Prior C This is as Prior B, except that the prior is told which nodes are orphans, i.e. any
BN with the wrong set of orphans has zero probability. MODULAR

32

BAYESIAN LEARNING OF BAYESIAN NETWORKS

SLPPrior A B C C C D C E F

Proposal Quc(l) quc(l) quc(l) quc(Q) quc(3) QUC(4) QUC(S) quc(Z) qsc
Combo 1 2 3 4 5 6 7 8 9

Table 2: Prior + proposal combinations used in our experiments

Prior D This is as Prior C except that the prior knows all pairs of variables which are
truly independent, i.e. any BN which does not respect these independence relations
will have zero probability. NOT MODULAR

Prior E A variant of Prior B. For each node the number of parents is always the true
number. The prior chooses uniformly from each possible parent set. MODULAR

Prior F Like Prior E, except that the prior, like Prior D, also knows true independence
relations. NOT MODULAR

5.3 Proposals

Proposals differ only in terms of backtracking.

Proposal ¢,.(1) A backtrack point is chosen uniformly from all possible chronological back-
track points.

Proposal ¢““®) A backtrack point is chosen uniformly from a subset of non-chronological

backtrack points. There is one backtrack point for each node in the BN. For each node,
backtracking to its associated backtrack point has the effect of removing all arrows
pointing to that node, so that it has no parents. New parents will subsequently be
chosen (according to whichever prior is being used) for that node.

Proposal ¢*¢ Similar to ¢“®? except that a single-component MH approach is taken. See
Section 4.3.4 for more on this proposal. Note that on each iteration a new parent set
is proposed for each node, so that each iteration is more computationally intensive
than for other proposals.

Proposal ¢“®) Like Proposal ¢““?) except that no backtrack points for true orphan nodes
are considered.

Proposal ¢,.4) Like Proposal q“? except that only chronological backtrack points are
considered.

Proposal ¢,.5) Chronological version of g4,

5.4 Experiments actually run

Given that we have 6 values for TrueBN, 2 values for Size, 6 values for SLPPrior, 2 values
for N, 4 values for Proposal and 3 different random seeds are used for each MCMC run,
there were 6 x 2 X 6 X 2 x 4 x 3 = 1728 runs of 250,000 iterations that we could have run.
We judged that our approach could be evaluated with significantly fewer runs. Firstly, not

33

ANGELOPOULOS AND CUSSENS

-1150 T T T T 7500

1200 | 1 8000 -

i
9000 fr!

-9500

Log likelihood
Log likelihood

-10000

-10500 -

-11000 -

L L L L 11500 L L L L
50000 100000 150000 200000 250000 0 50000 100000 150000 200000 250000
lterations

Figure 18: Log-likehood trajectories for 3 different runs. LHS+RHS: Size = 500, N = 10,
SLPPrior = D, Proposal = q,,¢(s) (Combo 6). LHS: TrueBN = ASIA. RHS: TrueBN
= INSURANCE

all 24 prior+proposal combinations were considered. Instead only those 9 combinations
shown in Table 2 were tried. From now on Combo will be used to refer to a prior+proposal
combination.

Secondly, as discussed in Section 6, most choices for Combo led to demonstrably poor
MCMC convergence. Since all experiments for N = 10 were done prior to those for N = 1,
we chose to restrict N = 1 runs to only those 4 values of Combo (4, 5, 8 and 9) which had
shown reasonable convergence in the N = 10 experiments. So for N=10, runs were done for
each combination of TrueBN, Combo, Size and seed leading to 6 x 9 x 2 x 3 = 324 runs,
whereas for N =1 only 6 x 4 x 2 x 3 = 144 runs were done.

6. Results

6.1 Negative convergence results with chronological proposals

As previously mentioned some Combos showed clear evidence of poor convergence. Poor
convergence was observed in all cases where non-chronological backtracking was used even
when the prior was highly biassed towards the true BN. Consider, for example, Combo 6
which has SLPPrior = D and Proposal = g,(4). SLPPrior D is highly biassed towards the
true BN since it rules out any BN which does not respect all the conditional independence
relations in the true BN. Nonetheless the poor movement through the state space which a
chronological proposal affords leads to poor results. Fig 18 shows log-likelihood trajectories
produced from MCMC runs applying Combo 6 to 500 datapoints generated from ASIA and
INSURANCE, respectively. In both cases N, the prior precision is set to 10. Trajectories
from the 3 independent runs are shown as well as a horizontal line giving the log-likelihood
of the true model. This is, of course, the marginal log-likelihood, log L(z) where L(x) is
given by (5). All log-likelihood trajectories will be of this format in this paper.

In the ASIA case the three different runs do at least give similar results, so that in the
LHS figure it is difficult to distinguish the different trajectories. However, in each case no
model is visited with a log-likelihood even close to that of the true one. The ASTA BN is a
very simple learning task, a more challenging task is given, for example, by INSURANCE.
The INSURANCE trajectory shows quite clearly that the 3 MCMC runs using Combo 6

34

BAYESIAN LEARNING OF BAYESIAN NETWORKS

7500 T T T T 7500

8000 - i
8000 fi |
g

-8500 [

i ; 8500

-9000

9500 9000

Log likelihood
Log likelihood

-10000 -
-9500

-10500 -

-10000
-11000 -

L L L L 10500 L L L L
50000 100000 150000 200000 250000 0 50000 100000 150000 200000 250000

lterations lterations

-11500
0

Figure 19: Log-likehood trajectories for 3 different runs. Both: TrueBN = INSURANCE,
Size = 500, N = 10, SLPPrior = C. LHS: Proposal = q,(1) (Combo 3). RHS:
Proposal = ¢““(2) (Combo 4)

-11000 T T T T -11000

-12000 - -12000 - 5

-13000

-13000 #

-14000 4 -14000

-15000 4 -15000

-16000 -16000

Log likelihood
Log likelihood

-17000 4 -17000 -

-18000 - 4 -18000 -

-19000 4 -19000

~20000 4 ~20000

L L L L 21000 L L L L
50000 100000 150000 200000 250000 0 50000 100000 150000 200000 250000

lterations lterations

21000
0

Figure 20: Log-likehood trajectories for 3 different runs. Both: TrueBN = ALARM, Size =
1000, SLPPrior = C, Proposal = ¢““® (Combo 5). LHS: N = 1. RHS: N = 10

each get stuck in different parts of the model space. The trajectories in Fig 18 are quite
typical of the ‘sticking’ problems which occur using a chronological proposal.

Combos 3 and 4 have the same prior (C) with the former having a chronological proposal
and the latter a non-chronological one, so comparing them brings out the advantage of
non-chronological proposals particularly clearly. Fig 19 shows the trajectories for these 2
Combos on runs identical in all other respects. The non-chronological Combo 4 comes closer
to converging and moreover explores models close (in log-likelihood) to the true BN.

6.2 Convergence for non-chronological priors

From now on we only consider experiments done using non-chronological proposals. Con-
vergence, as far as can be judged by log-likelihood trajectories, is generally good for these
proposals, in contrast to chronological ones. In all cases runs for Size = 500 and Size = 1000
tell a similar story, so we will restrict attention to the latter since it is the harder learning
scenario. It is harder because with a greater amount of data the posterior will be further
from the prior making it harder for our Metropolis-Hastings algorithm (driven by proposals
guided by the prior) to converge.

35

ANGELOPOULOS AND CUSSENS

55000 -50000

-55000 ﬁ

-60000 |-

65000 [} B 60000
i]

g likelinood
g likelinood

= -70000 4 = -65000
75000 B 70000

L L L L 75000 L L L L
50000 100000 150000 200000 250000 0 50000 100000 150000 200000 250000
lterations lterations

-80000
0

-50000 T T T T 50000

55000 55000 |-

-60000 4 -60000 [
g

g likelinood
g likelinood

= -65000 4 = -65000 |

-70000 - 4 70000 -

-75000 -75000
0

50000 100000 150000 200000 250000 0 50000 100000 150000 200000 250000
lterations lterations

Figure 21: Log-likehood trajectories for 3 different runs. All: TrueBN = HAILFINDER,
Size = 1000, N = 1, SLPPrior = C. Top-left: Proposal = ¢“<(2) (Combo 4). Top-
right: Proposal = ¢““(3) (Combo 5). Bottom-left: Proposal = ¢““(®) (Combo 8).
Bottom-right: Proposal = ¢*¢ (Combo 9). [Note that the top-left y-scale differs
from the others.]

In most cases, trajectories for N = 1 and N = 10 were similar. The exception to this
was the set of results for TrueBN = ALARM. For ALARM, runs for N = 10 consistently
found models whose log-likelihoods were above that of the true model but this was not the
case for N = 1. Fig 20 shows a typical example of this contrast using Combo 5.

From now we will restrict attention to the case where prior precision N was set to 1.
The basic story is that Combos 5, 8 and 9 consistently gave better results than Combo 4 and
that PARITY?2 was significantly more difficult than the other BNs. Fig 21 shows results for
HAILFINDER which are similar to those obtained for all other BNs apart from PARITY2.
For Combos 5, 8 and 9 each of the 3 realisations of the Markov chain finds its way to a
region of the model space with high scoring models and stays there. Note that Combo 9
converges especially rapidly. For HAILFINDER, INSURANCE and PARITY1 this region
contains models with log-likelihood scores significantly higher than that of the true model.
For ASTA and ALARM the scores are the same.

These phenomena can be explained as follows. Recall that each likelihood we consider
is a marginal likelihood which is a ‘weighted average’ of fitted likelihoods for the parame-
terised model for each possible choice of parameters. (The ‘weights’ are given by the choice
of Dirichlet distribution over possible parameters.) Modulo sampling variation, the fitted
likelihood of TrueBN will be high if parameterised with the ‘true’ parameters (the ones used

36

BAYESIAN LEARNING OF BAYESIAN NETWORKS

63500 T T T T 63500

64000

64500 -

65000 [

65500 -

Log likelihood
Log likelihood

66000 <7

66000 | | .
-66500 -

66500 67000 -

L L L L 67500 L L L L
50000 100000 150000 200000 250000 0 50000 100000 150000 200000 250000
lterations lterations

67000
0

-63000 T T T T -63000

-63500 - -63500 -

-64000 [faad j

64500 - et

65000 - e
65500 1‘

-66000

64000 [

64500 - f

65000 |

Log likelihood
Log likelihood

65500 [|

-66000

66500 4 66500 -

67000 67000
0

50000 100000 150000 200000 250000 0 50000 100000 150000 200000 250000
lterations lterations

Figure 22: Log-likehood trajectories for 3 different runs. All: TrueBN = PARITY?2, Size
= 1000, N = 1, SLPPrior = C. Top-left: Proposal = ¢“(2) (Combo 4). Top-
right: Proposal = ¢““(3) (Combo 5. Bottom-left: Proposal = ¢““(?) (Combo 8).
Bottom-right: Proposal = ¢*¢ (Combo 9). [Note different y-axis scales.]

to generate the data) but there may be large areas of the parameter space defining fitted
models with low fitted likelihood leading to a low marginal likelihood overall.

We can get a rough idea of the extent of this problem by looking at the number and
proportion of true parameters of value zero for various models. We have the following (with
some rounding) HAILFINDER = 501/3760 = 13.3%, INSURANCE = 302/1419 = 21.3%,
ASTA =4/36 = 11.1%, ALARM = 5/747 = 1.0%, PARITY1 = 0/194 = 0.0%, PARITY?2
= 0/496. Roughly speaking, a high number of zero parameters puts the true parameters
towards the edge of the parameter space, and so most other parameterisations of the true
structure, being distant from these true parameters, lead to low fitted likelihoods and thus
a low marginal likelihood overall. Clearly, this also obtains if we have many near-zero true
parameters as well—which happens to be the case for PARITY1 and to a lesser extent for
PARITY?2. We conjecture that the small number of zeroes for the true parameters of ASTA
and ALARM explain why these true BNs had high marginal log-likelihood.

PARITY?2 is atypical in that our chains show clear evidence of non-convergence. Note
though that, for Combos 8 and 9 the MCMC runs nearly always end up visiting models with
higher log-likelihoods than the true PARITY2 model. These phenomena are demonstrated
by Fig 22.

37

ANGELOPOULOS AND CUSSENS

Datasizes = 500 and 1000 for TrueBN = alarm
80000

"500_alarm.dat"
"1000_alarm.dat" -------

70000 4

60000 - { g
50000 - / i

40000 |- { :

Runtime (sec)

30000

20000

10000

Combo

Figure 23: Runtimes for TrueBN=Alarm and Sizes of 500 and 1000. Combos order: 1-9

6.3 Running times for MCMC

The experiments were run on SICStus Prolog (version 3.12). The computers used run the
Linux operating system and have modest workstation capabilities (3-4GHz single processor,
0.5 or 1GB memory). We recorded runtimes that include total cpu time and garbage
collection. Figures 23 and 24 illustrate some of the execution times. In all cases: the
y-axis plots runtimes in seconds, the z-axis plots Combos, each value is the average of three
separate runs, and all times are from experiments where N = 10. Experiments with N =1
are very similar as the only difference is the value of a constant with no significant effect on
performance.

Runtimes vary greatly depending on four main factors. The average size of (BN) families,
the number of known orphans, the size of the data and the time taken at each iteration.
Fig 23 illustrates the effect of Size on execution time. The z-axis shows Combos in the
same order as that of Table 2. In Combos 4, 5 and 8 the y-values for Size = 1000, is only
marginally larger than the corresponding values for Size = 500. In all three cases, the
proposal is non-chronological and at each iteration a single family is reconsidered and it
usually is a small one. The computation of the likelihood, which depends on the size of
the data, in these cases is very fast. From the remaining Cobmos we can deduce that the
likelihood computation is a major contributor to the overall runtimes as the difference in
y-values between 500 and 1000 is almost half the variation from the base cases of Combos
4, 5 and 8.

The two plots in Fig 24 separate the TrueBNs into two groups which accommodate
the variability of the displayed runtimes. Hailfinder and Parity2 register longer execution
times as they have more variables than the rest of the TrueBNs. The two plots are drawn
on different y-axis ranges. Note that Combo 9, the leftmost on z-axis, although non-
chronological, is by design spending much longer than other non-chronological proposals at
each iteration, as each and every family in the network are reconsidered in turn.

38

BAYESIAN LEARNING OF BAYESIAN NETWORKS

Datasizes = 1000 for TrueBNs = [asiam,alarm, Datasize = 1000 for TrueBN = [hailfinder,parity2]

80000

500000
70000 -

60000 | 400000 [

50000 -

£ 300000 -
40000

30000 1 200000 |-

20000 |
100000
10000

0 = 0

Combo (9,1,6,7.3,2,4,5,8) Combo (9,1,6,7,3,2,45,8)

Figure 24: LHS: runtimes versus Combo for TrueBNs Alarm, Asian, Insurance and Par-
ityl. RHS: runtimes versus Combo for Hailfinder and Parity2. Combos’ order:
9,1,6,7,3,2,4,5,8. Note that the y-axis ranges are not drawn to the same scale

6.4 Concentration of the posterior around the true model

Log-likelihood trajectories constitute a useful tool providing evidence for convergence/non-
convergence. However, we are interested not only in how well our MCMC runs allows us
to approximate the posterior, but also in the nature of the posterior itself. Specifically, to
what extent is the posterior distribution concentrated around the true BN?

To address this question it is necessary to introduce a measure of ‘distance’ between
any given BN and the true BN. We do this in the standard way by considering various loss
functions. A loss function measures the loss one would suffer by using a given BN instead
of the true one (so that the loss of the true BN is always zero). There is no such thing as
a ‘correct’ universal loss function since the loss suffered depends on what a user is doing
with the learned BNs, and this will vary between applications. We consider three simple
loss functions:

Naive 0-1 loss (ID) is a crude loss function where it is necessary to identify the correct
BN structure ezactly to avoid a maximal loss of 1.

0 if BN = TrueBN

1 otherwise (10)

LID(BN, TrueBN) == {

Naive edge symmetric difference loss (NE) penalises a BN for each extra or missing
edge it has with respect to TrueBN. Let Epy be the set of edges in BN and let
ET,ueBN be the set of edges in By egN- To allow easier comparison we normalise:
let n be the number of vertices in the true BN, then we have

Epy A E
Las(BN, TrueBN) — 2N QT”‘eBN| (11)
n

Given the normalisation used, Lyg(BN, TrueBN) is the probability that a randomly
chosen pair of vertices are correctly (dis)connected. This was essentially the structural
loss function used in Heckerman et al. (1995a) “the structural difference we use is
>oi 6; where ¢; is the symmetric difference of the parents of z; in the gold-standard
network and the parents of x; in the learned network.”

39

ANGELOPOULOS AND CUSSENS

Essential graph edge symmetric difference (CK) is the same as naive edge symmet-
ric difference except that the essential graph of the BN is compared to the essential
graph of TrueBN. An undirected edge A — B in an essential graph is considered to
be a pair of directed edges A — B, A « B. This is the metric used by Castelo and
Kocka (2003).

Define the posterior expected loss E_ TrueBN(L) for a given posterior 7, loss function
L, and true model TrueBN:

E_ TrueBN(L) = Y L(BN, TrueBN)x(BN) (12)
BN

En,TrueBN(L) essentially measures the cost of picking a BN randomly chosen from 7 and
using it instead of TrueBN. The more the posterior is concentrated around BNs ‘near’ to
TrueBN, the smaller E_ T,ogN(L) will be.

Posterior expected loss is a measure of how concentrated the posterior is around the true
model. We only have the approximation to the posterior supplied by MCMC, but since,
with the exception of PARITY2, convergence appears reasonable we can use the sample
MCMC to provide approximations to (12). Table 3 show the results of doing this for all
combinations of TrueBN, non-chronological Proposal and loss function. Results using the
unsuccessful Combo 1 are also provided to provide a baseline. In each case posterior loss
estimates from 3 different MCMC runs are given.

Table 3 shows the following;:

e NE and CK results unsurprisingly tell a similar story. This is essentially because at
most one representative from each Markov equivalence class is in our model space.
We restrict attention to ID and NE loss from now on.

e The baseline Combo 1 NE results are often close to 1/4, which is the expected NE loss
for a uniform distribution over the set of BNs which respect the variable ordering.

e Results are generally stable across MCMC runs.

e The Loss=ID results show that the true BN is never visited except when TrueBN is
ASTA and an informative prior is used. Note that, since we impose the true variable
ordering as a constraint, at most one representative from each Markov equivalence
class of BNs is in the model space. It follows that, with the exception just noted, no
BN in the true Markov equivalence class is visited.

e Recall that Lyg(BN, TrueBN) measures the probability that a pair of vertices in BN
is correctly (dis)connected. So, notwithstanding the previous point, the many very
low values for NE loss show that these posteriors are concentrated on BNs which are
structurally similar to the true BN, even for PARITY2.

6.5 Single model learning

To provide a comparison with standard Bayesian net learning algorithms we extracted
from each MCMC run: BNjp;4p, the most visited model and BNy g, the model with

40

BAYESIAN LEARNING OF BAYESIAN NETWORKS

Combo

1D

ASTA
NE

CK

© 00 U i~

1.00
1.00
0.99
0.16
0.16

1.00
1.00
0.99
0.16
0.16

1.00
1.00
0.99
0.16
0.16

0.1215
0.0934
0.0433
0.0052
0.0051

0.1252
0.1221
0.0423
0.0051
0.0052

0.1286
0.0933
0.0432
0.0050
0.0051

0.1474
0.1396
0.0654
0.0053
0.0051

0.1500
0.1552
0.0642
0.0051
0.0052

0.1539
0.1399
0.0649
0.0051
0.0052

Combo

1D

ALARM

NE

CK

O 00 U i~

1.00
1.00
1.00
0.99
1.00

1.00
1.00
1.00
1.00
1.00

1.00
1.00
1.00
1.00
1.00

0.1953
0.0216
0.0086
0.0030
0.0028

0.1982
0.0200
0.0092
0.0032
0.0029

0.1981
0.0226
0.0087
0.0032
0.0029

0.1971
0.0245
0.0108
0.0031
0.0029

0.2007
0.0229
0.0115
0.0032
0.0029

0.2012
0.0255
0.0110
0.0032
0.0029

Combo

ID

HAILFINDER

NE

CK

—_

© 00 U i~

1.00
1.00
1.00
1.00
1.00

1.00
1.00
1.00
1.00
1.00

1.00
1.00
1.00
1.00
1.00

0.2401
0.0271
0.0110
0.0123
0.0118

0.2384
0.0251
0.0115
0.0115
0.0117

0.2300
0.0235
0.0113
0.0115
0.0116

0.2433
0.0290
0.0143
0.0151
0.0151

0.2416
0.0273
0.0149
0.0147
0.0149

0.2326
0.0259
0.0145
0.0148
0.0148

Combo

ID

INSURANCE

NE

CK

© 00 U i~

1.00
1.00
1.00
1.00
1.00

1.00
1.00
1.00
1.00
1.00

1.00
1.00
1.00
1.00
1.00

0.1907
0.0555
0.0555
0.0307
0.0300

0.1820
0.0547
0.0547
0.0305
0.0300

0.1923
0.0547
0.0547
0.0299
0.0301

0.2004
0.0664
0.0664
0.0397
0.0389

0.1878
0.0663
0.0663
0.0394
0.0389

0.1997
0.0659
0.0659
0.0386
0.0391

Combo

ID

PARITY1

NE

CK

© 00 Ut

1.00
1.00
1.00
1.00
1.00

1.00
1.00
1.00
1.00
1.00

1.00
1.00
1.00
1.00
1.00

0.2220
0.1227
0.1136
0.0990
0.0988

0.2306
0.1206
0.1096
0.0990
0.0995

0.2295
0.1195
0.1123
0.0999
0.0990

0.2242
0.1248
0.1165
0.0995
0.0993

0.2372
0.1264
0.1125
0.0994
0.1000

0.2345
0.1257
0.1152
0.1004
0.0995

Combo

1D

PARITY?2

NE

CK

© 00 Ut i~

1.00
1.00
1.00
1.00
1.00

1.00
1.00
1.00
1.00
1.00

1.00
1.00
1.00
1.00
1.00

0.2469
0.0075
0.0062
0.0062
0.0060

0.2475
0.0069
0.0061
0.0062
0.0059

0.2492
0.0074
0.0063
0.0071
0.0060

0.2469
0.0075
0.0062
0.0062
0.0060

0.2475
0.0069
0.0062
0.0062
0.0060

Table 3: Estimated posterior expected loss results for all BNs

41

0.2492
0.0076
0.0064
0.0072
0.0060

ANGELOPOULOS AND CUSSENS

the highest log-likelihood. BNj;ap is an estimate for the BN with the highest posterior
probability under the prior encoded by the SLP and BN ;g is an estimate of the highest
posterior probability model with a uniform prior distribution over models with positive
prior probability according to the SLP prior. Table 4 show the ID and NE loss for these
models for all TrueBNs and Combos 1, 4, 5, 8 and 9.

Table 4 shows the following:

e Results are generally stable across different realisations of the same Markov chain.

e Excluding the baseline Combo 1: For ASIA, MLE and MAP losses were always iden-
tical; for ALARM, INSURANCE and PARITY1 MLE has lower or equal loss, for
HAILFINDER and PARITY?2 results were mixed. This suggests that the principal
influence given by our priors is the hard constraint effected by zero prior probabilities.

e As expected both MAP and MLE losses are smaller than posterior expected loss:
selecting an appropriate model using the (approximate) posterior renders a better
model than randomly selecting one according to the posterior.

In two cases we can do a rough comparison with existing work. Castelo and Kocka
(2003) (among many other experiments) apply their HCMC algorithm to a dataset of 1000
points sampled from the ALARM BN. They run this (randomised) algorithm with different
parameter settings, the best CK score averaging at 0.0073. So, as Tables 3 and 4 show,
the basic story is that our ALARM results (whether expected loss, MAP loss or MLE
loss) are worse than theirs with Combos 1, 4 and 5 and better with the Combos 8 and 9.
Acid and de Campos (2003) also learn from data sampled from ALARM. Their smallest
dataset has 3000 datapoints, from which their algorithm learned a BN with an NE loss
of only 0.0014, better than all our scores, but this is using three times as much data.
They also did experiments on datasets generated from INSURANCE and HAILFINDER.
For INSURANCE with 10,000 datapoints the learned BN had NE loss of 0.0247 (a little
better than our scores produced using 1,000 datapoints). For HAILFINDER, again with
10,000 datapoints, an NE loss of only 0.00765 was achieved: considerably better than our
HAILFINDER losses (using only 1,000 data points) which are in the 0.011-0.012 region.

7. Conclusions

The research presented here lies at the intersection of two research areas: Bayesian model
averaging of BNs via MCMC (Madigan and York, 1995; Friedman and Koller, 2003) and the
use of rich representations to represent the model space (Langseth and Nielsen, 2003; Segal
et al., 2005). In our case the representation language (first-order logic) and the MCMC
approach are tightly coupled since the Metropolis-Hastings proposals operate by pruning
and re-growing proof trees.

First-order logic has proved to be an effective way of incorporating domain knowledge
into the prior. For example, to add pairwise independence constraints the d-separation
criterion was written in clausal logic (concretely a Prolog program) and just added as an
extra constraint on what a legal BN was. It was straightforward to apply (variants of) many
of the approaches to defining priors described in Section 2. The system employed, called
MCMCMS, is not specific to BNs; other recent work has applied it to Bayesian learning of

42

BAYESIAN LEARNING OF BAYESIAN NETWORKS

ASIA ALARM

C BN ID | NE ID NE
1 |MAP |1 1 1[0.0625 00781 00937 |1 1 1[0.189 0.1950 0.1972
1 | MLE |1 1 1[0.0937 0.0937 0.0937 |1 1 102132 0.1957 0.1957
4 | MAP |1 1 1][00937 0.1093 0.0937 [[1 1 1]0.0182 0.0175 0.0204
4 | MLE |1 1 100937 0.1093 0.0937 |1 1 1]0.0189 0.0175 0.0197
5 |MAP |1 1 1/0.0312 00312 0.0312 |1 1 10.0073 0.0080 0.0087
5 |MLE |1 1 1/0.0312 00312 0.0312 |1 1 1 |0.0065 0.0058 0.0065
8 |[MAP[0 0 0| 00 0.0 00 |1 1 1]0.0029 0.0029 0.0029
8 |MLE |0 0 0| 00 0.0 0.0 |1 1 1]0.0029 0.0029 0.0029
9 |[MAP|0O 0 0| 00 0.0 00 |1 1 1[0.0029 0.0029 0.0029
9 |MLE |0 0 0] 00 0.0 0.0 |1 1 1]0.0029 0.0029 0.0029

HAILFINDER INSURANCE

Combo | BN ID | NE 1D NE
1 |MAP |1 1 1[02397 02382 02292 |1 1 1[0.1893 0.1810 0.1865
1 | MLE |1 1 1[0.2397 02382 02302 |1 1 101906 0.1810 0.1906
4 | MAP |1 1 1]0.0277 0.0258 0.0239 [[1 1 1]0.0548 0.0562 0.0576
4 | MLE |1 1 100277 00232 0.0229 ||[1 1 1]0.0562 0.0534 0.0521
5 |MAP |1 1 1/0.0102 0.0092 0.0095 |1 1 1[0.0301 0.0329 0.0329
5 |MLE |1 1 1/0.0117 0.0092 0.0098 |1 1 1 |0.0301 0.0329 0.0329
8 |MAP |1 1 100140 0.0108 0.0108 [[1 1 1 [0.0301 0.0301 0.0301
8 |MLE |1 1 100133 0.0121 0.0102 |1 1 1]0.0274 0.0301 0.0274
9 |[MAP |1 1 100127 0.0102 0.0108 [1 1 1]0.0301 0.0301 0.0301
9 |MLE |1 1 100114 00121 0.0114 |[1 1 1]0.0301 0.0301 0.0301

PARITY1 PARITY?2

Combo | BN ID | NE ID NE
1 |[MAP[1 1 1[02066 02272 02272 1 1 1][0.2466 0.2470 0.2486
1 | MLE |1 1 1[0.208 02272 02293 |1 1 1]0.2465 0.2475 0.2488
4 | MAP |1 1 101198 01239 0.1198 |1 1 1[0.0075 0.0071 0.0072
4 |MLE |1 1 101219 01198 0.1198 |[1 1 1]0.0074 0.0065 0.0076
5 |MAP|1 1 101115 0.109 0.1115[1 1 10.0056 0.0058 0.0060
5 |MLE |1 1 101157 0.1095 0.1074 |1 1 1]0.0063 0.0058 0.0058
8 |MAP |1 1 1[00950 0.0991 0.0991 [1 1 1]0.0054 0.0060 0.0064
8 |MLE |1 1 101033 0.0991 0.0991 |[1 1 1]0.0054 0.0064 0.0078
9 |MAP |1 1 1]0.0950 0.1033 0.1033 |1 1 10.0058 0.0058 0.0060
9 | MLE |1 1 1]0.0909 0.0991 0.0950 |[1 1 1]0.0058 0.0058 0.0060

Table 4: Loss figures for MAP and MLE models for all BNs

43

ANGELOPOULOS AND CUSSENS

classification trees (Angelopoulos and Cussens, 2005a,c). The first of these papers shows
how to apply the distance based approach to priors (see Section 2.2.2) to classification
trees. In the work on classification trees, non-chronological priors have also been used to
good effect.

A central goal of this research has been investigate the effect of informative structural
priors on MCMC for Bayesian nets. To this end even our least informative priors have made
use of the true variable ordering. But, given a variable ordering, ezact Bayesian approaches
are possible, so the MCMC methods in this case are questionable. For example, Koivisto
and Sood (2004) present an algorithm which finds the MAP BN given an ordering. Exact
computation of posterior quantities is also exploited by Friedman and Koller (2003) as a
‘subroutine’ in MCMC over variable orderings. However, in both these cases it is required
that the structural priors are modular. Here this is not required, although to use non-
modular priors we do have to resort to pseudo-prior-Gibbs. Note that the restriction to
modular structural priors has to be dropped to allow independence constraints to be used.

Our results indicate that our most complex proposal: pseudo-prior-Gibbs, is the most
successful despite being the theoretically flawed one. Future work will focus on this ap-
proach. Although our approach is intended for use when domain knowledge is there to be
exploited and a variable ordering is the most common sort of domain knowledge, it would
be interesting to use priors which do not use such an ordering, perhaps compensating with
(conditional) independence constraints. Even with this best proposal our MCMC runs failed
on PARITY2. A possible solution is to employ tempering which we used successfully for
classification trees (Angelopoulos and Cussens, 2005c¢), and it has been successfully used by
Laskey and Myers (2003) for Bayesian nets.

Acknowledgements

This work was partially supported by UK EPSRC MathFIT project Stochastic Logic Pro-
grams for MCMC (GR/S30993/01). We would like to thank Mikko Koivisto and Kismat
Sood for supplying their datasets.

References

B. Abramson, J. Brown, A. Murphy, and R. L. Winker. Hailfinder: A Bayesian system for
forecasting severe weather. International Journal of Forecasting, 12:57-71, 1996.

Silvia Acid and Luis M. de Campos. Searching for Bayesian network structures in the space
of restricted acyclic partially directed graphs. Journal of Artificial Intelligence Research,
18:445-490, 2003.

Christophe Andrieu, Nando de Freitas, Arnaud Doucet, and Michael I. Jordan. An intro-
duction to MCMC for Machine Learning. Machine Learning, 50:5-43, 2003.

Nicos Angelopoulos and James Cussens. Markov chain Monte Carlo using tree-based priors
on model structure. In Jack Breese and Daphne Koller, editors, Proceedings of the Seven-
teenth Annual Conference on Uncertainty in Artificial Intelligence (UAI-2001), Seattle,
August 2001. Morgan Kaufmann. URL ftp://ftp.cs.york.ac.uk/pub/aig/Papers/
james.cussens/uaiOl.ps.gz.

44

BAYESIAN LEARNING OF BAYESIAN NETWORKS

Nicos Angelopoulos and James Cussens. Extended stochastic logic programs for infor-
mative priors over C&RTs. In Rui Camacho, Ross King, and Ashwin Srinivasan, edi-
tors, Proceedings of the work-in-progress track of the Fourteenth International Confer-
ence on Inductive Logic Programming (ILP04), pages 7-11, Porto, September 2004a.
URL ftp://ftp.cs.york.ac.uk/pub/aig/Papers/james.cussens/ilp04_wip.pdf.

Nicos Angelopoulos and James Cussens. On the implementation of MCMC proposals over
stochastic logic programs. In Colloguium on Implementation of Constraint and LQOgic
Programming Systems. Satellite workshop to ICLP’0/, Saint-Malo, France, 2004b. URL
ftp://ftp.cs.york.ac.uk/pub/aig/Papers/james.cussens/ciclops04.ps.gz.

Nicos Angelopoulos and James Cussens. Exploiting informative priors for Bayesian classifi-
cation and regression trees. In Proc. 19th International Joint Conference on AI (IJCAI-
05), Edinburgh, August 2005a.

Nicos Angelopoulos and James Cussens. MCMCMS 0.3.4 User Guide. University of York,
2005b. URL http://www.cs.york.ac.uk/aig/slps/mcmcms/MCMCMS_uguide.html.

Nicos Angelopoulos and James Cussens. Tempering for Bayesian C&RT. In Proceedings of
the 22nd International Conference on Machine Learning (ICML05), Bonn, 2005c.

I. A. Beinlich, H. J. Suermondt, R. M. Chavez, and G. F. Cooper. The alarm monitoring
system: A case study with two probabilistic inference techniques for belief networks.

In Proceedings of the European Conference on Artificial Intelligence in Medicine, pages
247-256, 1989.

J. Binder, D. Koller, S. Russell, and K. Kanazawa. Adaptive probabilistic networks with
hidden variables. Machine Learning, 29:213-244, 1997.

Susanne G. Bgttcher and Claus Dethlefsen. deal: A package for learning Bayesian networks.
Journal of Statistical Software, 8(20), 2003.

W. L. Buntine. Theory refinement of Bayesian networks. In Bruce D’Ambrosio, Philippe
Smets, and Piero Bonissone, editors, Proceedings of the Seventh Annual Conference on
Uncertainty in Artificial Intelligence (UAI-1991), pages 52-60, 1991. URL http://

citeseer.nj.nec.com/buntine91theory.html.

Robert Castelo and Tom&as Kocka. On inclusion-driven learning of Bayesian networks.
Journal of Machine Learning Research, 4:527-574, 2003.

G. Cooper and E. Herskovits. A Bayesian method for the induction of probabilistic networks
from data. Machine Learning, 9:309-347, 1992. URL http://smi-web.stanford.edu/
pubs/SMI_Reports/SMI-91-0355.pdf. Appeared as 1991 Technical Report KSL-91-02
for the Knowledge Systems Laboratory, Stanford University (also SMI-91-0355).

James Cussens. Stochastic logic programs: Sampling, inference and applications. In Proc.
UAI-00, pages 115-122, San Francisco, CA, 2000. Morgan Kaufmann. URL ftp://ftp.
cs.york.ac.uk/pub/ML_GROUP/Papers/uai00.ps.gz.

45

ANGELOPOULOS AND CUSSENS

James Cussens. Parameter estimation in stochastic logic programs. Machine Learning, 44
(3):245-271, 2001. URL ftp://ftp.cs.york.ac.uk/pub/ML_GROUP/Papers/jcslpmlj.

ps.gz.

Thore Egeland, Petter Mostad, Bente Mevag, and Margurethe Stenersen. Beyond tradi-
tional paternity and identification cases. Selecting the most probable pedigree. Forensic
Science International, 110(1), 2000.

William Feller. An Introduction to Probability Theory and Its Applications, volume 1. John
Wiley, New York, third edition, 1950.

G. Frege. Begriffsschrift, eine der arithmetischen nachgebildete Formelsprache des reinen
Denkens, 1879.

Nir Friedman and Daphne Koller. Being Bayesian about network structure: A Bayesian
approach to structure discovery in Bayesian networks. Machine Learning, 50:95-126,
2003. URL http://robotics.stanford.edu/~koller/papers/order-mcmc.ps. Ex-
panded version of UAI-2000 paper.

Andrew Gelman. Parameterization and Bayesian modeling. Journal of the American Sta-
tistical Association, 99(466):537-545, 2004.

W. R. Gilks, S. Richardson, and D. J. Spiegelhalter, editors. Markov Chain Monte Carlo
in Practice. Chapman & Hall, 1996.

Olle Haggstrom. Finite Markov Chains and Algorithmic Applications, volume 52 of London
Mathematical Society Student Texts. Cambridge University Press, Cambridge, 2002.

D. Heckerman, D. Geiger, and D. Chickering. Learning Bayesian networks: The combination
of knowledge and statistical data. Machine Learning, 20:197-243, 1995a. URL ftp://
ftp.research.microsoft.com/pub/tr/tr-94-09.ps. Also appears as Technical Report
MSR-TR-94-09, Microsoft Research, March, 1994 (revised December, 1994).

David Heckerman, David Maxwell Chickering, Christopher Meek, Robert Rounthwaite,
and Carl Kadie. Dependency networks for inference, collaborative filtering, and data
visualization. Journal of Machine Learning Research, 1:49-75, October 2000.

David Heckerman, Dan Geiger, and David M. Chickering. Learning Bayesian networks:
The combination of knowledge and statistical data. Machine Learning, 20(3):197-243,
1995b.

Seren Hgjsgaard and Bo Thiesson. BIFROST—block recursive models induced from relevant
knowledge, observations, and statistical techniques. Computational Statistics & Data
Analysis, 19:155-175, 1995.

Colin Howson and Peter Urbach. Scientific Reasoning: The Bayesian Approach. Open
Court, La Salle, Illinois, 1989.

Mikko Koivisto and Kismat Sood. Exact Bayesian structure discovery in Bayesian networks.
Journal of Machine Learning Research, 5:549-573, 2004.

46

BAYESIAN LEARNING OF BAYESIAN NETWORKS

Helge Langseth and Thomas D. Nielsen. Fusion of domain knowledge with data for
structural learning in object oriented domains. Journal of Machine Learning Research,
4:339-368, July 2003. URL http://www.jmlr.org/papers/volume4/langseth03a/
langsethO3a.pdf.

Kathryn Blackmond Laskey and James W. Myers. Population Markov chain Monte Carlo.
Machine Learning, 50:175-196, 2003.

S.L. Lauritzen and D.J. Spiegelhalter. Local computations with probabilities on graphical
structures and their applications to expert systems. Journal of the Royal Statistical
Society A, 50(2):157-224, 1988.

Steffen L. Lauritzen and Thomas S. Richardson. Chain graph models and their causal
interpretations. Journal of the Royal Statistical Society (B), 64(3):321-361, 2002.

D. Madigan and J. York. Bayesian graphical models for discrete data. International Sta-
tistical Review, 63:215-232, 1995.

David Madigan, Jonathan Gavrin, and Adrian E. Raftery. Eliciting prior information
to enhance the predictive performance of Bayesian graphical models. Communica-
tions in Statistics: Theory and Methods, 24:2271-2292, 1995. URL http://www.stat.
washington.edu/tech.reports/tr270.ps. Appeared as 1994 Technical Report 270,
University of Washington.

David Madigan and Adrian E. Raftery. Model selection and accounting for model un-
certainty in graphical models using Occam’s window. Journal of the American Statis-
tical Association, 89:1535-1546, 1994. URL http://www.stat.washington.edu/www/
research/reports/1991/tr213.ps. First version was 1991 Technical Report 213, Uni-
versity of Washington.

Stephen Muggleton. Stochastic logic programs. In Luc De Raedt, editor, Advances in Induc-
tive Logic Programming, volume 32 of Frontiers in Artificial Intelligence and Applications,
pages 254-264. 10S Press, Amsterdam, 1996.

Ulf Nilsson and Jan Matuszynski. Logic, Programming and Prolog. John Wiley, Chichester,
second edition, 1995. URL http://www.ida.liu.se/~ulfni/lpp/.

Matthew Richardson and Pedro Domingos. Learning with knowledge from multiple experts.
In Proceedings of the Twentieth International Conference on Machine Learning, Wash-
ington, DC, 2003. Morgan Kaufmann. URL http://www.cs.washington.edu/homes/
pedrod/papers/mlc03.pdf.

Christian P. Robert and Robert Casella. Monte Carlo Statistical Methods. Springer, New
York, second edition, 2004.

Eran Segal, Dana Pe’er, Aviv Regev, Daphne Koller, and Nir Friedman. Learning module
networks. Journal of Machine Learning Research, 6:557—-588, 2005.

47

ANGELOPOULOS AND CUSSENS

Nuala Sheehan and Daniel Sorensen. Graphical models for mapping continuous traits.
In Peter J. Green, Nils Lid Hjort, and Sylvia Richardson, editors, Highly Structured
Stochastic Systems, pages 382-386. Oxford University Press, Oxford, 2003.

Sampath Srinivas, Stuart Russell, and Alice M. Agogino. Automated construction of sparse
Bayesian networks from unstructured probabilistic models and domain information. In
Max Henrion, Ross Schachter, Laveen Kanal, and John Flemmer, editors, Uncertainty in
Artificial Intelligence: Proceedings of the Fifth Conference (UAI-1989), pages 295-308,
New York, NY, 1990. Elsevier Science Publishing Company, Inc.

Matthew Stephens and Peter Donelly. A comparison of Bayesian methods for haplotype
reconstruction from population genotype data. American Journal of Human Genetics,
73:1162-1169, 2003.

Robert Valdueza Castelo and Arno Siebes. Priors on network structures. Biasing the
search for Bayesian networks. Technical Report INS-R9816, Centruum voor Wiskunde
en Informatica (CWI), Amsterdam, The Netherlands, December 1998. URL http:
//www.cwi.nl/ftp/CWlreports/INS/INS-R9816.pdf.

V.N. Vapnik and A. Ya. Chervonenkis. On the uniform convergence of relative frequencies
of events to their probabilities. Theory of Probability and its Applications, 16(2):264-280,
1971.

48

