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Introduction MCMCMS implements a generic framework for constructing
Markov chains. It can be used to perform statistical machine learning in a
Bayesian framework. It presents a modular, high level approach to performing
MCMC simulations over statistical models that can explain observed data [1].
The two main benefits of MCMCMS are its prior-centric construction of the
chain, that does away with the need for an explicit proposal, and the fact that
complex, crisp and probabilistic, information can be encoded in the prior by use
of a high level language. MCMCMS priors can be encoded as SLPs (Stochastic
logic programs, [4]) or as DLPs (Distributional). DLPs extend SLPs by allowing
on-the-fly computations of the probabilistic labels.

Implementation The system is implemented in Prolog and it is open source.
Through extensive use of term expansion the labelled clauses are transformed
to Prolog ones with additional arguments. Inserted calls to the random number
generator allow probabilistic clause selection, while stochastic backtracking is
via an extra clausal argument holding a path structure. MCMCMS runs on the
current Yap (6.2.0) and Swi (5.11.22) Prologs.

Applications It has be tested on two model spaces: C&ARTs and Bayes nets.
In addition to a number of synthetic and literature test sets, it has been used
to analyse chemical binding data [5] (C&RTs) and DNA assay data [3] (BNs).
[2] presented an extensive comparison on effective priors for BNs.
Availability: http://scibsfs.bch.ed.ac.uk/~nicos/sware/dlp/mcmcms
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