
Exporting Prolog soure ode

Nios Angelopoulos

Department of Computing,

Imperial College, London.

nios�do.i.a.uk

May 13, 2002

Abstrat

In this paper we present a simple soure ode on�guration tool.

ExLibris operates on libraries and an be used to extrat from loal li-

braries all ode relevant to a partiular projet. Our approah is not

designed to address problems arising in ode prodution lines, but rather,

to support the needs of individual or small teams of researhers who wish

to ommuniate their Prolog programs. In the proess, we also wish to

aommodate and enourage the writing of reusable ode. With onsid-

eration to this aim we have set the following objetives: �le-based soure

development, minimal program transformation, simpliity, and minimum

number of new primitives.

1 Introdution

Prolog has been around for nearly thirty years. Its ability to survive as a general

purpose programming language an be mainly attributed to the fat that it is

omplimentary to the major players in the �eld. Without disregard to the

many ommerial produts written in Prolog, the language, arguably, thrives in

aademi environments, and in partiular in AI and proof-of-onept omputer

siene researh.

An important element in suh projets is that the developers are only ex-

peted to write ode in a part-time basis within a volatile environment. As

a result, programs evolve from few hundred lines to several thousands in an

evolutionary manner, that is, without prior overall design of the �nal produt.

Indeed, it is seldom the ase that an identi�able �nal produt stage is ever

reahed.

This is ontrary to expetations in non-aademi settings. As is the fat

that sharing and publishing of un�nished soure ode is desirable. Furthermore

tools suh as the Unix make utility, (Feldman, 1979) whih admittedly targets

a di�erent set of objetives, requires dupliation of work and disourages re-

usability of Prolog ode. In ontrast, we present ExLibris whih makes use of

the diretives present in Prolog soure �les to overome these problems.

1

A onvenient method for inluding relatively positioned soure ode is by us-

ing the library alias present in most modern Prolog systems. This mehanism

is used primarily for system ode that implements useful ommon prediates.

For example the lists library present in most Prolog systems de�nes, among

others, prediates member/2 and append/3. ExLibris extends the idea by allow-

ing, during projet development, aess to ode from a number of home library

diretories. When one wants to export the projet for publi use, the soure �les

that are relevant are bundled into a loal library diretory. The only hange

required is that the loal diretory is added as a library diretory in the top

soure �les.

This library oriented approah enourages the writing of reusable ode. For

instane, prediates that aomplish generi tasks should be developed in the

home library. Furthermore, it promotes a library oriented way of thinking,

where useful ode an beome independent and in later stages part of the system

libraries. For example, the Pillow program (Cabeza and Hermenegildo, 1997)

has been inorporated in the urrent SICStus 3.9.0 release (SICStus 3.9.0, 2002).

Unlike the DERIV E system, (Brereton and Singleton, 1995) we have hosen

to use the underlying �le store, and to provide in-soure support for system-

dependent on�guration. DERIV E stores prediates in a relational database

and uses table attributes to ahieve a more holisti approah to Prolog based

software engineering.

Dependene on soure �les mean that in order to aommodate multiple

prolog engines and runtime loading we need to introdue some new primitives.

In this paper we present a minimum set of suh primitives whih we believe are

interesting in, at least, pointing some of the support needed for suh tasks.

ExLibris an be used for on�guring both oarse and �ne grain libraries.

Coarse libraries de�ne many prediates per �le, whereas �ner grains redue

this to a possibly minimum of one prediate per �le. ExLibris depends for the

grouping of soure �les to the primitives provided by the �lesystem, that is on

the subdiretory relation.

The remaining of this paper is organised as follows. Setion 2 deals with some

preliminary Prolog de�nitions that deal with onditional loading and tentative

dependenies of soure �les. Setion 3, presents the funtionality of ExLibris.

Setion 4, provides some omments on the features, limitations, and possible

future work. Finally, Setion 5 serves as the onluding setion.

2 Preliminaries

The standard development and on�guration phases supported by ExLibris are

shown in Fig. 1. Development happens at a projet diretory whih, possibly,

ontains a loal library diretory. During development, �les in the projet di-

retory an use the library alias to load any of the following three: system

�les, that are part of supported prolog engines, home �les, that are part of the

developer's or the developing team's �lespae, and loal �les, that are within

the projet's spae. ExLibris is a tool that helps to reate an export diretory

2

local . . .

project 1

file 1 lib

meta

maplist

. . .

. . .

. . .

system

lib

lists

/

. . .

. . .

system

lib

lists

/

. . .

. . .

. . .

. . .

. . .

. . .

local . . .

project 1

file 1 lib

meta

maplist

home
/

home

lib

list

flatten

. . .

. . .

. . .

. . .

list

flatten

Development

Export

Figure 1: all sorts of libraries

that is independent of home dependenies (as illustrated in the lower part of

Fig. 1).

2.1 Conditional load prediates

Sine the publiation of the Prolog Iso standard (International Standard, 1995;

Deransart et al., 1996) the vast majority of systems have strove for ompliane.

This has made the idea of the same prolog ode running on di�erent engine

feasible. Still minor di�erenes exist, and it is neessary to take these into

aount.

The two issues we need to address are, uniform strutured prolog identi�a-

tion and onditional loading. These tasks are useful in their own right so, we

ollet the relevant prediates in the pl library. This has been implemented and

tested for SICStus, SWI (Wielemaker, 2002), and Yap (Yap 4.3.20, 2002).

2.1.1 pl/1

Firstly, pl de�nes prediate pl/1. Its argument identi�es the running prolog

system with a ompound term, we refer to this term as pl-term. The name

of the term identi�es the prolog system and the term's single argument the

version, pl-version. The version should be suh that the term order imposes

the relevant order on the versions. For example the terms for the three most

reent versions of the supported systems are: sistus(3:9:0), swi(5:0:5), and

yap(4:3:20).

3

2.1.2 if pl/2,3

Files an then be loaded onditionally to the urrent system. Prediates if pl/2,3,4

provide the means for aomplishing this, and an be alled as follows:

if_pl(+PlTerms, +Call).

if_pl(+PlName, +PlVersOps, +Call).

if_pl(+PlName, +PlVersOps, +Call, +ElseCall).

The prediate is quite general sine alls Call and ElseCall an be any allable

term. Here we are interested in the ases where if pl is used as a diretive

and the alls is of the form LoadCall(: : : F iles : : :). P lTerms is a single or a

list of pl-terms. P lName is the name part of a pl-term. P lV ersOps is a

list of pl-version and operator pairs (PlVer-Op). Files is a single, or a list

of soure �les. LoadCall/n is any of the usual load prediate suh as load/1

and ensure loaded/1. An operator is a binary operator that an be applied

to two pl-version terms. In the if pl/2 version Files are loaded by alling

LoadCall, if and only if, run system's pl-term uni�es with some element of

PlTerms. In the if pl/3 version, Files are loaded if and only if (a) the name

of the exeuting Prolog is idential to P lName and (b) eah pl-version satis-

�es the orresponding Operator when tested against to the exeuting system's

pl-version. The all is formed as Op(load-pl-version,run-pl-version).

For example :- if pl(yap, 4.3.20-�<, library('list/atten')). enountered by any

yap system older than 4.3.20 will load �le flatten. Finally, in if pl/4 ElseCall

is alled whenever onditions are not satis�ed for exeuting Call.

2.2 Dependent �les

Finally, we need to address a disrepany that arises from loading ode at run-

time. Unlike when using diretives these situations give no easily aessible

information about the �les a program depends upon. Although it seems useful

to have a diretive delaring tentative dependenies suh feature is not present

in any of the disussed systems.

We propose a very simple mehanism failitated by may load/1 diretives.

:- may load(+Files) delares that a single or a list of �les may be loaded at

runtime by the program present in the same soure �le.

3 Export

Prediate exlibris/1 is used to reate an export diretory struture from the

developer's soure ode. The emphasis is plaed in integrating relevant parts of

private libraries. Its single argument is a list of options. The reognised options

are as follows.

dest(Destination) the destination diretory where the exported �les will be

opied. This should not exist prior to the all. This option does not have

a default value.

4

soure(Srs) a single �le or diretory or a list of soure �les and diretories.

Eah is onsidered to be either an entry level soure �le, or a diretory

ontaining entry level soure �les. An entry level �le is one that a user is

expeted to load diretly. In the ase of diretories all soure �les within

are onsidered entry level soure �les. There is no default value for this

option.

opy(Copy) whether diretories ontaining entry �les should also be opied

reursively, Copy == reursive, or entry �les should be opied individually,

Copy == seletive. Default is Copy == seletive.

syslib(SysLib) usually a single system library path, but a list of paths an

also be given. The provided path should point to the developing Prolog's

system library diretory. Default is the �rst diretory given as the answer

to query ?- library diretory(L).

homelibs(HomeLibs) a list of private libraries holding soure �les that are

loaded from entry �les or their dependents by the library alias. The

intuition is that during development these diretories are de�ned using

library diretory/1 in entry �les or some appropriate start �le. The

default value is ['~/prolog/lib'℄.

lolib(LoLib) a path for the loal library. This is onsidered relatively to

Destination. All referened �les in HomeLibs will be opied into LoLib.

The relative path of any suh �le from the appropriate HomeLib will be

rereated within LoLib. Note that this may be an existing diretory

within some soure diretory. Default value: lib.

pls(P ls) a single or a list of pl-terms. Only �les pertinent to systems

orresponding to these pl-terms are opied. These are identi�ed from

if pl/2,3 diretives as disussed in Setion 2.1.2. The default value is for

all prologs whih is equivalent to pls()

The exported �les are idential to the development ones proviso two trans-

formations. Entry level �les loose any library diretory/1 de�nition and

instead the following lines are added on the top of eah suh �le

% Following line added by ExLibris.

:- library_diretory('RelPathToLoLib').

When exporting, the value of diretory RelPathToLoLib is known and it is

the path to LoLib relative to the partiular entry level �le. The seond trans-

formation is to remove any if pl/2,3 that does not math any of the system

pl-term in P ls.

4 Disussion

Our approah uses the �lesystem's diretory struture as its medium of group-

ing prediates at the level of soure �les. This, supports both �ne and oarse

5

grain groupings. Examples of oarse groupings are the system libraries de�n-

ing a sore of prediates for soure �le. Whereas, �ne grouping would favour

single prediate de�nition per soure �le or module �les exporting a single predi-

ate. However, operations suh as moving soure �les within the home diretory

struture will need to be aommodated by future tools.

Currently, exlibris runs on SICStus v3.9.0. and Swi v4.0 or later under Unix.

Our plans are also to support the Yap and Ciao (Bueno et al., 2002) systems.

Yap does not have the absolute file name/3 prediate or the layout option for

read term/2, while for Ciao we still need to investigate. For SICStus, and sine

layout option only provides the start line of read terms, exlibris requires that

if pl terms are the only terms on the text line in whih they appear, and also that

there are no new line haraters to the end of the term (to the period). Other

operating systems may be supported via the support Prolog systems provide for

translation of Unix paths to other operating system paths. All ode desribed

in this paper an be found at http://www.do.i.a.uk/ nios/exlibris/

A number of additional tools may be onstruted that an help with keeping

projets and libraries onsistent as well as failitating library merging. For suh

tasks, as is also true for other soure ode manipulation, it will be useful to have

a strutured form of omments.

In the future we will like to implement non-reursive library opies. That is,

the relative path of a home library �le is reonstruted into the exported loal

library diretory. This feature is urrently not supported beause it requires

ode transformations to a degree greater than we wish the ore program to

have. One possibility would be to add this as an additional tool that an atten

out any arbitrary library while updating projet soure �les and inter-library

dependenies.

5 Conlusions

The �rst ontribution of this paper was to propose simple mehanisms for on-

ditional, depending on the underlying system, loading and exeution, and for

delaring tentative soure �le dependenies.

We also provided a straight forward proedure for ode on�guration and

exportation. We have kept ore funtionalities to a minimum as to enour-

age simpliity and thus usage. The main ontribution of ExLibris is that it

enourages development of reusable ode.

Referenes

Brereton, P. and Singleton, P. (1995). Dedutive software building. In Estublier,

J., editor, Software Con�guration Managment. ICSE SCM-4 and SCN-5

Workshops. Seleted Papers, number 1005 in LNCS, pages 81{87. Springer.

Bueno, F., Cabeza, D., Carro, M., Hermenegildo, M., L�opez, P., and Puebla,

6

G. (2002). Ciao 7.1. User Manual. The CLIP Group. Tehnial University

of Madrid, Spain. http://www.lip.dia.�.upm.es/Software/Ciao/.

Cabeza, D. and Hermenegildo, M. (1997). Www programming using ompu-

tational logi systems (and the pillow/iao library). In Proeedings of the

Workshop on Logi Programming and the WWW at WWW6.

Deransart, P., Ed-Dbali, A., and Cervoni, L. (1996). Prolog: The Standard.

SpringerVerlag.

Feldman, S. I. (1979). make-a program for maintaining omputer programs.

Software - Pratise & Experiene, 9:255{265.

International Standard (1995). ISO/IEC 13211-1 (PROLOG: Part 1{general

ore).

SICStus 3.9.0 (2002). User Manual. Swedish Institute of Computer Siene,

Sweden. http://www.sis.se/isl/sistus.html.

Wielemaker, J. (2002). SWI-Prolog 5.0.5. User Manual. SWI, University of

Amsterdam, The Netherlands. http://www.swi-prolog.org.

Yap 4.3.20 (2002). User Manual. LIACC/Universidade do Porto and COPPE

Sistemas/UFRJ, Portugal. http://www.os.ufrj.br/ vitor/Yap/.

7

