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PRISM: PRogramming In Statistical Models
Early versions: Sato (1995) and Sato and Kameya (1997).

• Prolog-like syntax augmented with ‘switches’ representing
parameterised discrete distrubutions; and msw/2 for
probabilistic choice.

• Subsumes Markov models, (discrete) HMMs, pCFGs,
graphical models.

• Sampling execution.
• Tabled execution (Sato and Kameya, 2000) to get

explanation graph (Earley deduction, generalises efficient
parsers).

• Efficient algorithms on the graph: Viterbi, inside,
inside-outside, EM for parameter learning.

• Further elaborations: variational Bayes (Kurihara and Sato,
2006), MCMC (Sato, 2011).
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PRISM

switch parameters
flags/settings

tables

model code

tabled execution

explanation graph

inside alg. outside alg.

EM, VB alg.
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Explanation graphs

Example model: dice(N,Z) means N throws of tetrahedral die
sum to Z.

values(die,[1,2,3,4 ]).

dice(0,0).
dice(N,Z) ←

msw(die, X),
N > 0, M is N−1, dice(M,Y),
Z is X+Y.

Enter a top goal dice(3,4).
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Explanation graphs

PRISM represents the explanation graph textually as:

dice(3,4) <=> dice(2,3) & msw(die,1)
v dice(2,2) & msw(die,2)

dice(2,3) <=> dice(1,2) & msw(die,1)
v dice(1,1) & msw(die,2)

dice(1,2) <=> dice(0,0) & msw(die,2)
dice(2,2) <=> dice(1,1) & msw(die,1)
dice(1,1) <=> dice(0,0) & msw(die,1)
dice(0,0)

Each subgoal is logically equivalent (<=>) to a disjunction (v) of
conjunctions (&). In the rest, we will refer to each conjunct as a
factor and a conjunction of factors as an explanation.
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Explanation graphs

Can think of as either a heterogenous graph or a hypergraph
(Klein and Manning, 2004) where black circles are hyperedges.

dice(0,0)

dice(1,1)

msw(die,1)

dice(1,2)

msw(die,2)

dice(2,2) dice(2,3)

dice(3,4)
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Inside algorithm

dice(0,0) 1.001.001.00

1.00

dice(1,1) 0.250.250.25

0.25

msw(die,1) 0.250.250.250.25

dice(1,2) 0.250.25

0.25

msw(die,2) 0.250.250.25

dice(2,2) 0.060.06

0.06

dice(2,3) 0.120.12

0.06 0.06

dice(3,4) 0.05

0.02 0.03
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Implementation size

Comparison between ccprism and PRISM version 2.1 (closest in
feature set to ccprism). Some code implementing general purpose
services has been excluded in order to compare like with like.

Prolog C Total
PRISM 6,463 8,010 14,473
ccprism 673 0 673

Although comparison is far from perfect (both implementations
include some features not found in the other) PRISM contains
roughly 20 times as much code.
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Continuations
Why consider continuations?

• Delimited continuations are really powerful: can implement
many kinds of computational effects, including state,
nondeterminism, all monads (Filinski, 1999) and tabling
equivalent to OLDT or SLG resolution (Desouter,
Van Dooren, and Schrijvers, 2015; Abdallah, 2017b;
Abdallah, 2017c).

• First used for probabilistic programming (in OCaml) by
Kiselyov and Shan (2008): programs yield a lazy search tree
over probabilistic choices.

• Getting more interest on the functional side (Stuhlmüller
and Goodman, 2012) and now in Anglican (Tolpin, Meent,
and Wood, 2015).

• Why should they have all the fun? Delimited control
recently introduced into Prolog by Schrijvers et al., 2013.
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Continuations

A continuation, at any point during program execution, is the
‘rest of the program’. Focus on the expression 3∗4 in the small
program below:

print (1 + 3∗4 )

The green region is the evaluation context for the expression.
The continuation represents what happens next—‘take the result,
add 1 and print it.’

But why stop at the print? Taken to its logical conclusion, the
undelimited continuation includes the whole OS and only ends
when the computer crashes or you switch it off.

Hence, undelimited continuations don’t return anything—they
are only used for their side effects; they are not functions.
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Delimited continuations

In order to manipulation continuations, we need a boundary,
implicit or explicit, to create a delimited continuation, for
example.

print (1 + 3∗4 )

The purple region is a delimited evaluation context for the
focussed expression. Now we can usefully ‘reify’ it (turn it into a
thing) as pure function of type int → int. Here, it is the function
λx.1 + x.

How can we control where the context boundaries are? How can
we get hold of the continuations?
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Delimited control

In functional languages, delimited control often expressed using
reset : (unit → α) → α and shift : (β → α) → β. Below, reset
defines the delimited context (or prompt) in purple:

print (reset (fun () → (1 + 3 ∗ 4 ) ))

shift allows us to capture a delimited continuation k and pass it
to, e.g., a function h:

print (reset (fun () → (1 + shift h ) ))

This replaces the entire delimited context with the return value
from h. h can do whatever it likes with the continuation.

Finally, delimited contexts can be nested; then shift captures the
continuation out to the innermost reset.
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Delimited control (nondeterminism)

One more example—you should be able smell Prolog on the
horizon. . .

let choose xs = shift (fun k → concat (map k xs)) in

print (reset (fun () → [1 + choose [1;2;3] ] ))

The result is a list of alternatives introduced by the choose
operator, which has type α list → α. This is one way to
introduce nondeterminism into a functional language.
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Delimited control (nondeterminism)

One more example—you should be able smell Prolog on the
horizon. . .

let k : int → int list = fun x → [1 + x] in

print (reset (fun () → [2;3;4] ))

The result is a list of alternatives introduced by the choose
operator, which has type α list → α. This is one way to
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Delimited control in Prolog
That’s great for functional languages. What about Prolog?

X=1 , Y is 3∗4 , Z is X+Y , writeln(Z)

Can put evaluation contexts around a subgoal in a similar way.
Schrijvers et al. (2013) use reset/3 and shift/1 to provide control.
I’m going to use p_reset/3 and p_shift/2, a very thin wrapper
providing a better API and named prompts.

Unlike functional reset/shift, Prolog shift/1 doesn’t decide what
to do with continuation—it just sends a ‘signal’ get(Y) along
with continuation for later code to deal with. This is more like
the algebraic effect handlers of Plotkin and Pretnar (2013).

N.B. real continuation is a bit more complex, but still an
ordinary term.
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Effect handlers in Prolog
Let’s write a simple effect handler which responds to get(Y) by
consuming values from a list.

get(Y) ← p_shift(rdr, get(Y)).

run_reader(Goal, Values) ←
p_reset(rdr, Goal, Status), handle(Status, Values).

handle(susp(get(Y), Cont), [Y |Ys ]) ← run_reader(Cont, Ys).
handle(done, _).

• Unifying Y with head of list sends data into Cont.
• handle/2 invokes continuation using run_reader/2.
• Though Goal may look ‘impure’, with get/1 as a

computational effect, run_reader/2 is pure. Effect is ‘reified’
using extra parameter Values.
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Effects for a probabilistic program

← meta_predicate :=(3,−), cctabled(:,0), sample(3,−).

dist(Ps,Xs,X) ← p_shift(prob, dist(Ps,Xs,X)).
uniform(Xs,X) ← p_shift(prob, uniform(Xs,X)).
sample(P,X) ← p_shift(prob, sample(P,X)).
SW := X ← p_shift(prob, sw(SW,X)).

cctabled(Head,Work) ← p_shift(tab, tcall(Head,Work,Inj)), call(Inj).

• Effects are addressed to two different prompts prob and tab,
which handle probabilistic choice and tabling respectively.

• SW identifies (it’s actually a predicate) a parameterised
distribution over terms, equivalent to PRISM switches.

• Tabling effect allows effect handler to inject and arbitrary
goal just after tabled call.
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distribution over terms, equivalent to PRISM switches.

• Tabling effect allows effect handler to inject and arbitrary
goal just after tabled call.
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Effects handlers

Handler for a prompt named prob, implemented as a DCG to
handle state threading, and delegating the actual handling to an
arbitrary predicate H.

← meta_predicate run_prob(3,0,?,?).
run_prob(H,Goal) −→ {p_reset(prob, Goal, Stat)}, cont_prob(Stat,H).

cont_prob(susp(Req,Cont),H) −→ call(H,Req), run_prob(H,Cont).
cont_prob(done,_) −→ [ ].

This is a very general handler—we could have called it
run_state_handler and put it in a general purpose library.
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Sampling execution without tabling
sample(P, sw(SW,X)) −→ !, call(P,SW,X).
sample(_, dist(Ps,Xs,X)) −→ !, pure(discrete(Xs,Ps),X).
sample(_, uniform(Xs,X)) −→ !, pure(uniform(Xs),X).
sample(_, sample(P,X)) −→ call(Q,X).

run_notab(Goal) ← p_reset(tab, Goal, Stat), cont_notab(Stat).
cont_notab(susp(tcall(_,Work,Work), Cont)) ← run_notab(Cont).
cont_notab(done).

← meta_predicate run_sampling(4,0,+,−).
run_sampling(Sampler,Goal,S1,S2) ←

run_notab(run_prob(sample(Sampler),Goal,S1,S2)).

Threaded state includes state of pseudorandom generator.

Sampler encapsulates the distribution parameters for each
switch—there is no global mutable state. No tabling is done:
worker goal merely injected into continuation.
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Tabled explanation search (types)

← type vc == ground.
← type swid(A) == ground.
← type factor −−−→ @number; swid(A):=A; module:vc.
← type sw(A) == pred(−swid(A), −list(A), list(A)).

A vc (variant class) represents all calls to a tabled goal with the
same pattern of arguments and variables as a ground term (using
numbervars/3):

A swid(A) is a ground term uniqely identifiying a switch whose
value are of type A. A sw(A) is predicate which ‘returns’ a
switch id and a difference list of the values the switch can take.

A factor explains a probabilistic deduction step—it is either the
probability of a choice from a fixed distribution, a switch with
one of its values, or a module-qualified variant class representing
a tabled subgoal.
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Tabled explanation search (explanations)

expl(M:VC) −→ [M:VC ].
expl(SW:=X) −→ {call(SW,ID,Xs,[ ]), member(X,Xs)}, [ID:=X ].
expl(dist(Ps,Xs,X)) −→ {member2(P,X,Ps,Xs)}, [@P ].
expl(uniform(Xs,X)) −→ {length(Xs,N), P is 1/N, member(X,Xs)}, [@P ].

term_to_variant_class(T1, T2) ←
copy_term_nat(T1,T2),
numbervars(T2,0,_).

member2(X,Y,[X |_ ],[Y |_ ]).
member2(X,Y,[_ |Xs ],[_ |Ys ]) ← member2(X,Y,Xs,Ys).
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Tabled explanation search (tabling types)

← type soln == list(term).
← type kont −−−→ k(list(var),term,pred).
← type table −−−→ tab(goal,rbtree(soln,list(list(factor))),list(cont)).

A soln (solution) is a list of values taken by variables in a tabled
call.

A kont (continuation with context variables) is a continuation
along with the variables to ‘communicate’ with it.

A table contains the tabled goal itself (with variables), a map
associating each solution with a list of explanations (each of
which is a list of factors), and a list of continuations waiting for
results from a tabled call.
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Tabled explanation search (tabling)
← use_module(library(rbutils)).
← use_module(ccnbenv).

← meta_predicate run_tab(0,?)
run_tab(Goal, Ans) ← p_reset(tab, Goal, Stat), cont_tab(Stat, Ans).

cont_tab(done, _).
cont_tab(susp(tcall(M:H,Work,p_shift(prob,M:VC)), Cont), Ans) ←

term_to_variant_class(H, VC),
term_variables(Work, Y), K = k(Y,Ans,Cont),
nb_app_or_new(M:VC, old_vc(R,K), new_vc(R,M:H,K)),
( R =solns(Ys) → rb_in(Y, _, Ys), run_tab(Cont, Ans)
; R =new → run_tab(producer(M:VC, λY.Work, Ans), Ans)
).

old_vc(solns(Ys), K, tab(H,Ys,[K0 |Ks ]), tab(H,Ys,[K0,K |Ks ])).
new_vc(new, H, K, tab(H,Ys,[K ])) ← rb_empty(Ys).
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Tabled explanation search (tabling)

producer(VC, Generate, Ans) ←
run_prob(expl, call(Generate, Y), E, [ ]),
nb_app(VC, new_soln(Y,E,Res)),
Res=new(Ks), member(k(Y,Ans,C), Ks), call(C).

new_soln(Y, E, Res, tab(V,Ys1,Ks), tab(V,Ys2,Ks)) ←
rb_app_or_new(Y, old_soln(Res,E), new_soln(Res,Ks,E), Ys1, Ys2).

new_soln(new(Ks),Ks,E,[E ]).
old_soln(old,E,Es,[E |Es ]).

This is basically the same as the tabling algorithm in (Abdallah,
2017c), slightly modified to collect explanations for each solution,
instead of just collecting solutions in a set.
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Dice model again

Before shallow program transformations:

← module(eg, [die//1, dice/2 ]).

die 7−→ [1,2,3,4 ].

← cctable dice/2.
dice(0,0).
dice(N,Z) ←

die := X,
succ(M,N), dice(M,Y),
Z is X+Y.

NB. Probabilistic predicates and switches are module scoped.
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Building the explanation graph

← use_module(library(rbutils)).
← use_module(ccprism/handlers)).
← use_module(ccprism/graph).
← use_module(ccnbenv).

← meta_predicate goal_graph(0,−).
goal_graph(Goal, G1) ←

run_nb_env(goal_expls_tables(Goal, Es, Ts)),
tables_graph(Ts, G0),
prune_graph(=, ‘#top’:top, [(‘#top’:top)−Es |G0 ], G1).

goal_expls_tables(Goal, Es, Ts) ←
run_tab(findall(E, run_prob(expl,Goal,E,[ ]), Es)),
nb_dump(Ts).
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Building the explanation graph

tables_graph(Ts, Graph) ←
rb_empty(Empty),
rb_fold(table_expls, Ts, Empty, GMap),
rb_visit(GMap, Graph).

table_expls(_−tab(Goal,Solns,_)) −→
{term_variables(Goal,Vars)},
rb_fold(soln_expls(Goal,Vars), Solns).

soln_expls(G,Y,Y1−Es) −→
{copy_term(G−Y,G1−Y1), numbervars(G1−Y1, 0, _)},
(rb_add(G1,Es) → [ ]; [ ]).
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Explanation graph (again)

dice(0,0) 1.001.001.00

1.00

dice(1,1) 0.250.250.25

0.25

die:=1 0.250.250.250.25

dice(1,2) 0.250.25

0.25

die:=2 0.250.250.25

dice(2,2) 0.060.06

0.06

dice(2,3) 0.120.12

0.06 0.06

dice(3,4) 0.050.05

0.02 0.03

top 0.05
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Semiring graph processing

Generalised processing over parse forests (Goodman, 1998;
Goodman, 1999). Idea is to replace ‘OR’ and ‘AND’ nodes of
graph with ‘plus’ and ‘times’ operators from a semiring.

A semiring is an algebra with a set of values and two binary
operators ⊕ and ⊗, both monoidal (having identity elements 0
and 1 respectively), and with some additional conditions.
Goodman shows how many useful parsing algorithms can be
defined using the same computation with different semirings,
including (+, 0,×, 1) over reals for inside algorithm,
(max,−∞,×, 1) for Viterbi algorithm, and operations over sets
of lists for parse tree extraction.
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Generalised semiring

More convenient to generalise types:

⊗ : α× β → β

⊕ : β × γ → γ

1 : β,

0 : γ

inj : factor × θ → α

proj : γ → α

Idea is to build a dataflow graph on the explanation graph,
replacing factor nodes with semiring operations, using inj to get
initial values from switch nodes and parameters and proj to feed
output of goal nodes back into product nodes.
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Semiring graph processing
← use_module(library(dcg_pair)).
← use_module(library(rbutils)).

← type sr(A,B,C,T). % open union type
semiring_graph_fold(SR, Graph, Params, GoalSums) ←

rb_empty(E),
foldl(sr_sum(SR), Graph, GoalSums, E, FMap),
fmap_sws(FMap, SWs),
maplist(fmap_sw_vals(sr_param(SR),true1,FMap),SWs,Params).

sr_param(SR,F,X,P) ← sr_inj(SR,F,P,X), !.
true1(_).

NB. order of graph traversal is not important because we can use
constraint based arithmetic predicates, e.g. CLP(R), to delay
numerics until variables are instantiated. Hence Params can
contain variables for switch value probabilities.
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Semiring graph processing
sr_sum(SR, Goal−Expls, Goal−Sum1) −→

fmap(Goal,Proj), {sr_zero(SR,Zero)},
run_right(foldr(sr_add_prod(SR),Expls), Zero, Sum),
{sr_proj(SR,Goal,Sum,Sum1,Proj)}.

sr_add_prod(SR, Expl) −→
{sr_unit(SR,Unit)},
run_right(foldr(sr_factor(SR), Expl), Unit, Prod) 〈\〉 sr_plus(SR,Prod).

sr_factor(SR, M:Head) −→ !, fmap(M:Head,X) 〈\〉 sr_times(SR,X).
sr_factor(SR, SW:=Val) −→ !, fmap(SW:=Val,X) 〈\〉 sr_times(SR,X).
sr_factor(SR, @P) −→ {sr_inj(SR,const,P,X)}, \〉 sr_times(SR,X).

By providing clauses of the sr_ predicates, this one piece of code
handles the inside and Viterbi algorithms with linear or log
scaled probabilities, best and k-best explanation tree extraction,
graph annotation, and any combination of these by semiring
composition.
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Factor-value map
Associative map from factors to α values in generalised semiring.

fmap(X,Y) −→ rb_add(X,Y) → [ ]; rb_get(X,Y).
fmap_sws(Map,SWs) ←

rb_fold(emit_if_sw,Map,SWs1,[ ]),
sort(SWs1,SWs).

emit_if_sw(F−_) −→ {F=(SW:=_)} → [SW ]; [ ].

← meta_predicate fmap_sw_vals(3,1,+,+,?).
fmap_sw_vals(Conv,Def,Map,SW,SW−XX) ←

call(SW,_,Vals,[ ]),
maplist(sw_val_or_default(Conv,Def,Map,SW),Vals,XX).

sw_val_or_default(Conv,Def,Map,SW,Val,X) ←
( rb_lookup(SW:=Val, P, Map)
→call(Conv,SW:=Val,P,X)
; call(Def,X)
).
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Semiring definitions

Numeric and list based semirings:
r(pred(T,A), pred(C,A), pred(A,B,B), pred(B,C,C)) : sr(A,B,C,T).

sr_inj(r(I,_,_,_), _, P, X) ← call(I,P,X).
sr_proj(r(_,P,_,_), _, X, Y, Y) ← call(P,X,Y).
sr_plus(r(_,_,_,O), X) −→ call(O,X).
sr_times(r(_,_,O,_), X) −→ call(O,X).
sr_zero(r(_,_,_,O), I) ← m_zero(O,I).
sr_unit(r(_,_,O,_), I) ← m_zero(O,I).

m_zero(add,0.0).
m_zero(mul,1.0).
m_zero(max,−inf).
m_zero(cons,[ ]).
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Semiring definitions (Viterbi)

Much like r(=,=,mul,max), but keeping the most likely
exlanation subtree along.

sr_inj(best(log), F, P, P−F) ← !.
sr_inj(best(lin), F, P, Q−F) ← log_e(P,Q).
sr_proj(best(_), G, X−E, X−E, X−(G−E)).
sr_plus(best(_), X) −→ max_by_fst(X).
sr_times(best(_), X−F) −→ add(X) 〈\〉 cons(F).
sr_zero(best(_), Z−_) ← m_zero(max,Z).
sr_unit(best(_), 0.0−[ ]).

max_by_fst(LX−X,LY−Y,Z) ←
when(ground(LX−LY),(LX≥ LY → Z = LX−X; Z = LY−Y)).
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Semiring definitions (annotation)

Use any semiring to annotate explanation graph.

sr_inj(ann(SR), F, P, Q−F) ← sr_inj(SR,F,P,Q).
sr_proj(ann(SR), G, X−Z, W−Z, Y−G) ← sr_proj(SR,G,X,W,Y).
sr_plus(ann(SR), X−Expl) −→ sr_plus(SR,X) 〈\〉 cons(X−Expl).
sr_times(ann(SR), X−F) −→ sr_times(SR,X) 〈\〉 cons(X−F).
sr_zero(ann(SR), Z−[ ]) ← sr_zero(SR,Z).
sr_unit(ann(SR), U−[ ]) ← sr_unit(SR,U).
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Semiring definitions (pair)

Combine results from any two semirings.

sr_inj(R1−R2, F, P, Q1−Q2) ← sr_inj(R1,F,P,Q1), sr_inj(R2,F,P,Q2).
sr_proj(R1−R2, G, X1−X2, Z1−Z2, Y1−Y2) ←

sr_proj(R1,G,X1,Z1,Y1), sr_proj(R2,G,X2,Z2,Y2).
sr_plus(R1−R2, X1−X2) −→ sr_plus(R1,X1) 〈\〉 sr_plus(R2,X2).
sr_times(R1−R2, X1−X2) −→ sr_times(R1,X1) 〈\〉 sr_times(R2,X2).
sr_zero(R1−R2, Z1−Z2) ← sr_zero(R1,Z1), sr_zero(R2,Z2).
sr_unit(R1−R2, U1−U2) ← sr_unit(R1,U1), sr_unit(R2,U2).
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Semiring definitions (lazy best first)
Lazy, unbounded version of Huang and Chiang (2005)

sr_inj(kbest, F, P, [Q−F ]) ← surp(P,Q).
sr_proj(kbest, G, X, X, Y) ← freeze(Y,lazy_maplist(k_tag(G),X,Y)).
sr_plus(kbest, X) −→ lazy(k_min,X).
sr_times(kbest, X) −→ lazy(k_mul,X).
sr_zero(kbest, [ ]).
sr_unit(kbest, [0.0−[ ] ]).

k_tag(G,L−X,L−(G−X)).
k_min([ ],Ys,Ys) ← !.
k_min(Xs,[ ],Xs) ← !.
k_min([X |Xs ],[Y |Ys ],[Z |Zs ]) ←

( LX−_=X, LY−_=Y, LX ≤ LY
→ Z=X, freeze(Zs, k_min(Xs,[Y |Ys ],Zs))
; Z=Y, freeze(Zs, k_min([X |Xs ],Ys,Zs))
).
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Semiring definitions (lazy best first)
k_mul(Xs,Ys,Zs) ←

empty_set(EmptyS), empty_heap(EmptyQ),
enqueue(pos(0−0,Xs,Ys), EmptyS−EmptyQ, TQ1),
lazy_unfold_finite(k_next, Zs, TQ1, _).

k_next(L−[XF |YFs ]) −→
\〉 pq_get(L,pos(I−J,[X0 |Xs ],[Y0 |Ys ])),
{_−XF=X0, _−YFs=Y0, succ(I,I1), succ(J,J1)},
enqueue(pos(I1−J,Xs,[Y0 |Ys ])),
enqueue(pos(I−J1,[X0 |Xs ],Ys)).

enqueue(P) −→ new_position_cost(P,L) → \〉 pq_add(L,P); [ ].
new_position_cost(pos(IJ,[X0 |_ ],[Y0 |_ ]),L) −→
\〈 add_to_set(IJ), {L is X0+Y0}.

pq_add(L,P,H1,H2) ← add_to_heap(H1,L,P,H2).
pq_get(L,P,H1,H2) ← get_from_heap(H1,L,P,H2).
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Outside algorithm in PRISM

Learning switch parameters requires expected sufficient statistics
(pseudocounts representing how often each switch value is used
in explanation graph).

Possibly Sato and Kameya (2001) were the first to notice that
this can be done by partial differentiation of probability of top
goal wrt switch parameters, then multiplying by inside
probabilities:

ηs,i =
θs,i
Pt

∂Pt
∂θs,i

where θs,i is the probability of switch s taking value i, ηs,i is the
corresponding statistic, and Pt is the inside probability of the
top goal.

In PRISM, this computation is expanded by hand into an explicit
traversal of explanation graph annoted with inside probabilities.
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ESS via automatic differentiation

Using CLP-based automatic differentiation in CHR/Prolog
(Abdallah, 2017a) we can do away with all this code: simply
compute the log (inside) probability of the top goal wrt to the
log scaled switch value probabilities using a semiring composed of
differentiable operators to get

ηs,i =
∂ logPt
∂ log θs,i

.

I suspect (not confirmed) that this will generalise to Viterbi
training simply by using differentiable max instead of add in
semiring.

Also expected to be useful in implementing new classes of switch
distributions (e.g. exponential families) and gradient based
learning (cf. deep learning).
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ESS via automatic differentiation

← use_module(library(autodiff2), [llog/2, log/2, exp/2, add/3, mul/3,
back/1, deriv/3, compile/0 ]).

m_zero(autodiff2:mul,1.0).
m_zero(autodiff2:add,0.0).

graph_counts(PSc, Graph, Params, Eta, LogProb) ←
SR = r(=,=,autodiff2:mul,autodiff2:add),
semiring_graph_fold(SR, Graph, P0, IG),
top_value(IG, Prob), log(Prob, LogProb),
scaling_log_params(PSc, P0, Params0, LogP0),
map_swc(deriv(LogProb), LogP0, Eta),
back(LogProb), compile, Params=Params0.

scaling_log_params(lin, P0, P0, LP0) ← map_swc(llog, P0, LP0).
scaling_log_params(log, P0, LP0, LP0) ← map_swc(exp, LP0, P0).
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Learning via expectation-maximisation (EM)
We can now do EM learning (with inverse temperature for
deterministic annealing) as follows: learn/4 returns in its fourth
argument a predicate to do one step of learning.

learn(ml, ITemp, Graph, unify3(t(P1,P2,LP))) ←
once(graph_counts(lin, Graph, PP, Eta, LP)),
map_swc(pow(ITemp), P1, PP),
map_sw(stoch, Eta, P2).

unify3(CVars,LP,P1,P2) ← copy_term(CVars, t(P1,P2,LP)).

This works because using CLP(R) or similar, we can build the
entire numerical dataflow graph once with uninstantiated
variables. We can then use the graph multiple times by copying
all the variables (including constraints), unifying the inputs with
numerical values, and reading off the outputs.
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Convergence of learning steps
General tool for running single step repeatedly to convergence:

← meta_predicate converge(+,1,−,+,−).
converge(Test, Setup, [X0 |History ], S0, SFinal) ←

time(call(Setup, Step)),
call(Step, X0, S0, S1),
converge_x(Test, Step, X0, History, S1, SFinal).

converge_x(Test, Step, X0, [X1 |History ], S1, SFinal) ←
call(Step, X1, S1, S2),
( converged(Test, X0, X1) → History=[ ], SFinal=S2
; converge_x(Test, Step, X1, History, S2, SFinal)
).

converged(abs(Eps), X1, X2) ← abs(X1−X2) ≤ Eps.
converged(rel(Del), X1, X2) ← abs((X1−X2)/(X1+X2)) ≤ Del.
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Declarative learning

Both maximum a posteriori learning (where there is a Dirichlet
prior over switch probability parameters) and variational Bayes
(where we learn a distribution over switch parameters, not point
estimates) can be implemented in another 22 lines, reusing the
same convergence tool.

All learning is pure declarative Prolog: parameters are input and
output via arguments and there are no global variables.

All variations on learning (linear or log scaled variants,
temperatures, priors etc.) are controlled by explicit parameters,
not implicit global settings.

Gibbs and Metropolis-Hastings samplers implemented purely
(using sampling effect handler) in another ∼ 90 lines.
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Examples: Sampling

The dice model given earlier can be sampled using
run_sampling//2. We must provide a predicate to act as a
database of switch distributions, e.g., using uniform_sampler//2
to assume a uniform distribution for all switches.

?− length(Xs,3),
strand(run_sampling(uniform_sampler,maplist(dice(3),Xs))).

Xs = [10, 7, 6 ] .

Here strand/1 is a utility from an independent package plrand
providing a random generator and various sampling distributions.
strand(G) runs G as a DCG goal with the initial state set to a
random RNG state.
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Examples: Sampling

If instead we want a particular distribution for switch die, we
can provide it using a ‘lookup sampler’:

?− make_lookup_sampler([(eg:die)−[0.5,0.1,0.3,0.1 ] ], S),
strand(run_sampling(S,maplist(dice(3),Xs))),
length(Xs,3).

Xs = [8, 5, 5 ],
S = ccp_handlers:lookup_sampler(<rbtree>).
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Examples: graph building

To build and pretty-print an explanation graph:
?− goal_graph(dice(3,4),G), print_term(G,[ ]).

[ (’.top’ : top) − [[eg:dice(3,4) ] ],
(eg : dice(0,0)) − [[ ] ],
(eg : dice(1,1)) − [[eg:die:=1,eg:dice(0,0) ] ],
(eg : dice(1,2)) − [[eg:die:=2,eg:dice(0,0) ] ],
(eg : dice(2,2)) − [[eg:die:=1,eg:dice(1,1) ] ],
(eg : dice(2,3)) − [[eg:die:=2,eg:dice(1,1) ],

[eg:die:=1,eg:dice(1,2) ] ],
(eg : dice(3,4)) − [[eg:die:=2,eg:dice(2,2) ],

[eg:die:=1,eg:dice(2,3) ] ]
]
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Examples: inside probabilities

Note that parameters P get numerical values after running the
inside aglorithm on the graph.

?− goal_graph(dice(3,4),G),
semiring_graph_fold(r(=,=,mul,add),G,P,IG),
graph_params(uniform,G,P),
print_term(IG,[ ]).

[ (’.top’ : top) − 0.046875,
(eg : dice(0,0)) − 1,
(eg : dice(1,1)) − 0.25,
(eg : dice(1,2)) − 0.25,
(eg : dice(2,2)) − 0.0625,
(eg : dice(2,3)) − 0.125,
(eg : dice(3,4)) − 0.046875

]
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Examples: more semirings

Showing only the calls and not the output, first an explanation
graph annotated with inside probabilities:

?− goal_graph(dice(3,4),G),
semiring_graph_fold(ann(r(=,=,mul,add)),G,P,IG),
graph_params(uniform,G,P),
print_term(IG,[ ]).

Now each subgoal with log probability of most likely explanation,
using log scaled probabilities:

?− goal_graph(dice(3,4),G),
semiring_graph_fold(r(log_e,=,add,max),G,P,VG),
graph_params(uniform,G,P),
print_term(VG,[ ]).
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Examples: expected switch-value counts

Compute expected sufficient statistics given log-scaled switch
parameters and using log-scaled inside algorithm:

?− goal_graph(dice(3,4),G),
graph_counts(log,log,G,P,Eta,LP),
graph_params(log(uniform),G,P).

G = [... ],
P = [(eg:die)−[−1.3863, −1.3863, −1.3863, −1.3863 ] ],
Eta = [(eg:die)−[2, 1, 0, 0 ] ],
LP = −3.0603.

In this case, all explanations use die:=1 twice and die:=2 once.
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Examples: sampling and learning

This is a longer example combining sampling a dataset of length
N and trying to learn the die distribution from it. The learned
parameters are returned in P1 and the history of likelihood
values in H.

sample_and_learn_dice(N,H,P1,R1,R2) ←
length(Xs,N),
make_lookup_sampler([(eg:die)−[0.2,0.4,0.3,0.1 ] ],S),
strand(run_sampling(S,maplist(dice(3),Xs)),R1,R2),
goal_graph(maplist(dice(3),Xs), G),
graph_params(uniform,G,P0),
converge(abs(1e−7), learn(ml,io(log),G), H, P0, P1).

This predicate has no side effects and no mutable global state is
modified or referenced. The state of the random generator is
passed in and out in R1 and R2.
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Conclusions

• It was possible to implement the main features of PRISM
using an order of magnitude less code.

• Code is mostly pure, declarative Prolog, with a few
metalinguistic constructs required to implement tabling.

• Both these aspects are intended to encourage reading,
understanding, modification and extension of the code.

• Performance: tabling is bit slow, but can be much improved
using methods of Abdallah, 2017c. EM learning is slower
than PRISM, but faster than equivalent computation graph
implemented using Theano or TensorFlow.

• Future work: switches distributions from exponential
families. Bayesian non-parametetrics.

• Please check out the code!
https://github.com/samer--/ccprism
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