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Introduction

Motivations

Inference Problem

• Probabilistic logic models are gaining popularity due to their
successful application in a variety of fields

• They usually require expensive inference procedures

• Many proposals to achieve tractability: Tractable Markov Logic,
Tractable Probabilistic Knowledge Bases and fragments of
probabilistic logics
• They limit the form of sentences

Learning Problem

• Learning from entailment presents tractability problems.
• The coverage problem consists in checking whether an atom follows

from a logic program.
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Introduction

Integrity Constraints: a Possible Solution

• If logic theories are sets of integrity constraints and examples are
interpretations
• coverage problem consists in verifying whether the constraints are

satisfied in the interpretations
• the constraints can be considered in isolation: the interpretation

satisfies the constraints iff it satisfies all of them individually
→ the learning from interpretation setting offers advantages in term of
tractability

• Moreover...
• they are useful for system verification or in the problem of checking

whether a systems behaviour is compliant to a specification
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Introduction

Probabilistic Inference

• In Probabilistic Logic Programming (PLP) the distribution semantics
is one of the most successful approaches.
• The probability distribution over normal logic programs (worlds) is

extended to queries and the probability of a query is obtained by
marginalizing the joint distribution of the query and the programs

• Performing inference requires an expensive procedure that is usually
based on knowledge compilation
• ProbLog [De Raedt et al., 2007] and PITA

[Riguzzi and Swift, 2011, Riguzzi and Swift, 2013] build a Boolean
formula and compile it into a Binary Decision Diagram (compilation
procedure is #P)
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Introduction

Probabilistic Constraint Logic Theories

• We consider a probabilistic version of sets of integrity constraints
similar to distribution semantics
• each integrity constraint is annotated with a probability
• a model assigns a probability of being positive to interpretations

• Differently from PLP approaches under the distribution semantics
• computing the probability of the positive class given an interpretation

in a PCLT is logarithmic in the number of variables
• PCLTs define a conditional probability distribution over a random

variable C representing the class, given an interpretation
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Constraint Logic Theories

Syntax

A Constraint Logic Theory (CLT) T is a set of integrity constraints (ICs)
C of the form

L1, . . . , Lb → A1; . . . ;Ah (1)

where

• L1, . . . , Lb is a conjunction of logical literals called body

• A1; . . . ;Ah is a disjunction of atoms called head

We may also have a background knowledge B on the domain which is a
normal logic program that can be used to represent domain-specific
knowledge
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Constraint Logic Theories

Semantics

• CLTs can be used to classify Herbrand interpretations by considering
a model M(B ∪ I ) which follows the Prolog semantics
• I is interpreted as the set of ground facts true in M(B ∪ I )
• M(B ∪ I ) can contain new facts derived from I using B

• Given an interpretation I , a background knowledge B and a
constraint C
• we can ask whether C is true in I given B

• M(B ∪ I ) |= C , if for every substitution θ for which Body(C) is true in
M(B ∪ I ), there exists a disjunct in Head(C) that is true in M(B ∪ I )
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Constraint Logic Theories

Running Example: Bongard Problems

• Bongard Problems consist of a number of pictures, some positive and
some negative

• Aim: learning a description which correctly classify the most figures

• The pictures contain different shapes with different properties (small,
large, . . . ) and different relationships between them (inside, . . . )

• Each picture can be described by an interpretation
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Constraint Logic Theories

Running Example: Bongard Problems

Ileftpict = {triangle(0), large(0), square(1), small(1), inside(1, 0),

triangle(2), inside(2, 1)}

With the background knowledge B:

in(A,B) ← inside(A,B).
in(A,D) ← inside(A,C ), in(C ,D).

M(B ∪ Ileftpict) contains in(1, 0), in(2, 1) and in(2, 0).
Given the IC C1 = triangle(T ), square(S), in(T , S)→ false
C1 is false in Ileftpict , true in Icentrpict and false in Irightpict
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Probabilistic Constraint Logic Theories

Syntax

A Probabilistic Constraint Logic Theory (PCLT) T is a set of probabilistic
integrity constraints (PICs) C of the form

pi :: L1, . . . , Lb → A1; . . . ;Ah (2)

where

• L1, . . . , Lb → A1; . . . ;Ah is an IC

• pi is a real value in [0, 1] which defines its probability

We may also have a background knowledge B
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Probabilistic Constraint Logic Theories

Semantics

• A PCLT T defines a probability distribution on ground constraint
logic theories called worlds
• for each grounding of each IC, we decide to include or not the

grounding in a world with probability pi
• we assume all groundings to be independent
• similar to the notion of world in ProbLog where a world is a normal

logic program.

• The probability of a world w is given by the product:

P(w) =
m∏
i=1

∏
Cij∈w

pi
∏

Cij 6∈w
(1− pi )

where m is the number of PICs.
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Probabilistic Constraint Logic Theories

• Given an interpretation I , a background knowledge B and a world w ,
the probability P(⊕|w , I ) of the positive class is
• P(⊕|w , I ) = 1 if M(B ∪ I ) |= w
• 0 otherwise.

• The probability P(⊕|I ) of the positive class is the probability of I
satisfying a PCLT T given B. From now on we always assume B as
given and we do not mention it again.

P(⊕|I ) =
∑
w∈W

P(⊕,w |I ) =
∑
w∈W

P(⊕|w , I )P(w |I ) =

∑
w∈W ,M(B∪I )|=w

P(w)

• The probability P(	|I ) of the negative class given an interpretation I
is the probability of I not satisfying T and is given by 1− P(⊕|I ).
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Probabilistic Constraint Logic Theories

Running Example: Bongard Problems

Ileftpict = {triangle(0), large(0), square(1), small(1), inside(1, 0),

triangle(2), inside(2, 1)}

With the background knowledge B:

in(A,B) ← inside(A,B).
in(A,D) ← inside(A,C ), in(C ,D).

M(B ∪ Ileftpict) contains in(1, 0), in(2, 1) and in(2, 0).
Given the IC C1 = 0.5 :: triangle(T ), square(S), in(T ,S)→ false
There are two different instantiations for the IC C1 → four possible worlds
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Probabilistic Constraint Logic Theories

Running Example: Bongard Problems

Four possible worlds {∅, {C11}, {C12}, {C11,C12}}
• for the first two of them M(B ∪ Il) |= wi

• P(⊕|Ileftpict) = P(w1) + P(w2) = 0.25 + 0.25 = 0.5

In the central picture there are four different instantiations for C1 → 16
worlds

• Icentrpict is verified in all of them (constraint is never violated)

• P(⊕|Icentrpict) = 1.

The right picture has 8 different instantiations for IC C1 → 256 worlds

• Irightpict is verified in only 32 of them

• P(⊕|Irightpict) = 0.125.
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Inference with PCLTs

A Problem that Must Be Solved

Computing P(⊕|I ) as seen before is impractical

The number of worlds is exponential in the number of instantiations
of the ICs

A possible solution:

• we can associate a Boolean random variable Xij to each instantiated
constraint Cij

• if Cij is included in the world Xij takes on value 1
• P(Xij) = P(Cij) = pi
• P(Xij) = 1− P(Cij) = 1− pi
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Inference with PCLTs

• A valuation ν is an assignment of a truth value to all variables in X.
• One to one correspondence between worlds and valuations
• ν can be represented as a set containing Xij (Cij is included in the

world) or Xij (Cij is not included in the world) for each Xij

• ν corresponds with φν =
∧m

i=1

∧
Xij∈ν Xij

∧
Xij∈ν Xij

P(φν) =
m∏
i=1

∏
Cij∈w

pi
∏

Cij 6∈w
(1− pi ) = P(w)
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Inference with PCLTs

Suppose a ground IC Cij is violated in I

• The worlds where Xij holds in the respective valuation are excluded
from the summation of previous slide

• We must keep only the worlds where Xij holds in the respective
valuation for all ground constraints Cij violated in I .

I satisfies all the worlds where the formula

φ =
m∧
i=1

∧
M(B∪I )6|=Cij

Xij

is true in the respective valuations

P(⊕|I ) = P(φ) =
m∏
i=1

(1− pi )
ni

where ni is the number of instantiations of Ci that are not satisfied in I .
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Inference with PCLTs

Running Example: Bongard Problems

C1 = 0.5 :: triangle(T ), square(S), in(T , S)→ false

• In the left picture the body of C1 is true for the single substitution
T/2 and S/1 thus n1 = 1 and P(⊕|Ileftpict) = 0.5.

• In the central picture the body of C1 is always false, thus n1 = 0 and
P(⊕|Icentrpict) = 1.

• In the right picture the body of C1 is true for three couples (triangle,
square) thus n1 = 3 and P(⊕|Irightpict) = 0.125.
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Properties

Independence Assumption: an Example

PCLT can model any conditional probabilistic relationship between the
class variable and the ground atoms.
Suppose you want to model a general conditional dependence between the
class atom and a Herbrand base containing two atoms: a and b.
This dependence can be represented as

a b

C

P ′(C |a, b) C

a b − +

0 0 1−p1 p1

0 1 1−p2 p2

1 0 1−p3 p3

1 1 1−p4 p4

where the conditional probability table has four parameters, p1, . . . , p4, so
is the most general.
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Properties

Independence Assumption: an Example

This model can be represented with the following PCLT

C1 = 1− p1 :: ¬a,¬b → false

C2 = 1− p2 :: ¬a, b → false

C3 = 1− p3 :: a,¬b → false

C4 = 1− p4 :: a, b → false

For example, the probability that the class variable assumes value + given
that a and b are false is

P(C = +|¬a,¬b) = 1− (1− p1) = p1

given interpretation {} (only constraint C1 is violated)

Alberti, M. et al. (UNIFE) PCLT August 30, 2016 21 / 28



Properties

Independence Assumption: an Example

The Bayesian network above is equivalent to

X1 X2 X3 X4 a b

Y1 Y2 Y3 Y4

C

• Boolean variable Xi represents whether constraint Ci is included in
the world

• Boolean variable Yi whether constraint Ci is violated
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Properties

Independence Assumption: an Example

• The conditional probability tables for nodes Xi s are

P ′′(Xi = 1) = 1− pi

• those for nodes Yi s encode the deterministic functions

Y1 = X1 ∧ ¬a ∧ ¬b
Y2 = X2 ∧ ¬a ∧ b

Y3 = X3 ∧ a ∧ ¬b
Y4 = X4 ∧ a ∧ b

• that for C encodes the deterministic function

C = ¬Y1 ∧ ¬Y2 ∧ ¬Y3 ∧ ¬Y4

where C is interpreted as a Boolean variable with 1 corresponding to
+ and 0 to -
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Properties

Independence Assumption: an Example

It is possible to show that the probability distribution of this BN coincides
with P for all the possible interpretations.
X variables are mutually unconditionally independent, showing that it is
possible to represent any conditional dependence of C from the Herbrand
base by using only independent random variables.
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Properties

PCLT and Markov Logic Networks

• Similarly to MLNs, PCLTs encode constraints on the possible
interpretations and the probability of an interpretation depends on the
number of violated constraints

• MLNs encode the joint distribution of the ground atoms and the
class, differently we concentrate on the conditional distribution of the
class given the ground atoms

• Given a PCLT, it is possible to obtain an equivalent MLN with an
equivalent probability distribution
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Conclusions

Conclusions and Future Work

• Conclusions
• We have proposed a probabilistic extension of constraint logic theories.
• Under this extension the computation of the probability of an

interpretation being positive is logarithmic in the number of falsified
constraints.

• Future Work
• The development of a system for learning such probabilistic integrity

constraint
• We will exploit Limited-memory BFGS for tuning the parameters and

constraint refinements for finding good structures
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Conclusions
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Conclusions
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