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Introduction

Motivations

Inference Problem

e Probabilistic logic models are gaining popularity due to their
successful application in a variety of fields
e They usually require expensive inference procedures
e Many proposals to achieve tractability: Tractable Markov Logic,
Tractable Probabilistic Knowledge Bases and fragments of
probabilistic logics
e They limit the form of sentences

Learning Problem
e Learning from entailment presents tractability problems.
e The coverage problem consists in checking whether an atom follows
from a logic program.
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Introduction

Integrity Constraints: a Possible Solution

o If logic theories are sets of integrity constraints and examples are
interpretations
e coverage problem consists in verifying whether the constraints are
satisfied in the interpretations
e the constraints can be considered in isolation: the interpretation
satisfies the constraints iff it satisfies all of them individually
— the learning from interpretation setting offers advantages in term of
tractability

e Moreover...
e they are useful for system verification or in the problem of checking
whether a systems behaviour is compliant to a specification
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Introduction

Probabilistic Inference

e In Probabilistic Logic Programming (PLP) the distribution semantics
is one of the most successful approaches.

e The probability distribution over normal logic programs (worlds) is
extended to queries and the probability of a query is obtained by
marginalizing the joint distribution of the query and the programs

o Performing inference requires an expensive procedure that is usually
based on knowledge compilation

e ProblLog [De Raedt et al., 2007] and PITA
[Riguzzi and Swift, 2011, Riguzzi and Swift, 2013] build a Boolean
formula and compile it into a Binary Decision Diagram (compilation
procedure is #P)
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Introduction

Probabilistic Constraint Logic Theories

e We consider a probabilistic version of sets of integrity constraints
similar to distribution semantics
e each integrity constraint is annotated with a probability
e a model assigns a probability of being positive to interpretations
e Differently from PLP approaches under the distribution semantics
e computing the probability of the positive class given an interpretation
in a PCLT is logarithmic in the number of variables
e PCLTs define a conditional probability distribution over a random
variable C representing the class, given an interpretation
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Syntax

A Constraint Logic Theory (CLT) T is a set of integrity constraints (ICs)
C of the form

Li,...,Lp — A1;...; Ap (1)
where
e [y,...,L, is a conjunction of logical literals called body
e A;j;...;Apis a disjunction of atoms called head

We may also have a background knowledge B on the domain which is a

normal logic program that can be used to represent domain-specific
knowledge
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Constraint Logic Theories

Semantics

e CLTs can be used to classify Herbrand interpretations by considering
a model M(B U I) which follows the Prolog semantics
e | is interpreted as the set of ground facts true in M(BU /)
e M(BU/) can contain new facts derived from / using B
e Given an interpretation /, a background knowledge B and a
constraint C
e we can ask whether C is true in | given B

e M(BUI) E C, if for every substitution 6 for which Body(C) is true in
M(B U I), there exists a disjunct in Head(C) that is true in M(B U I)
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Constraint Logic Theories

Running Example: Bongard Problems
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e Bongard Problems consist of a number of pictures, some positive and
some negative

e Aim: learning a description which correctly classify the most figures

e The pictures contain different shapes with different properties (small,
large, ...) and different relationships between them (inside, ...)

e Each picture can be described by an interpretation
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Constraint Logic Theories

Running Example: Bongard Problems
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0 =
liefipice = {triangle(0), large(0), square(1), small(1), inside(1,0),

triangle(2), inside(2,1)}
With the background knowledge B:
in(A,B) < inside(A, B).
in(A,D) <« inside(A, C),in(C, D).
(1,

M(B U liefepict) contains in(1,0), in(2,1) and in(2,0).

Given the IC C; = triangle(T), square(S), in(T,S) — false &

(1 is false in liefipict, true in leentrpice and false in lighepict -
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Probabilistic Constraint Logic Theories
Syntax

A Probabilistic Constraint Logic Theory (PCLT) T is a set of probabilistic
integrity constraints (PICs) C of the form

pi::Ll,...,Lb—>A1;...;Ah (2)

where
° Ll,...,Lb—>A1;...;Ah is an IC

e pjis a real value in [0, 1] which defines its probability

We may also have a background knowledge B
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Semantics

o A PCLT T defines a probability distribution on ground constraint
logic theories called worlds

e for each grounding of each IC, we decide to include or not the
grounding in a world with probability p;

e we assume all groundings to be independent

e similar to the notion of world in ProbLog where a world is a normal
logic program.

e The probability of a world w is given by the product:

Pw)=T]II » II * —p)

i=1Cjew  Cj¢gw

where m is the number of PICs.

4
{i@é)‘fﬁ?é‘
Alberti, M. et al. (UNIFE) PCLT August 30, 2016 12 / 28



Probabilistic Constraint Logic Theories

e Given an interpretation /, a background knowledge B and a world w,
the probability P(®|w, /) of the positive class is
o P(@lw,)=1if MBUIEwW
e 0 otherwise.

e The probability P(®|/) of the positive class is the probability of /
satisfying a PCLT T given B. From now on we always assume B as
given and we do not mention it again.

Pl =Y Pl@,wll)= Y P@|w,)P(w|l)=

weW weWw
> P(w)
weW M(BUIl)Ew

e The probability P(©]|/) of the negative class given an interpretation /
is the probability of / not satisfying T and is given by 1 — P(|/).
)
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Probabilistic Constraint Logic Theories

Running Example: Bongard Problems

AN bl AV -
0. [ AAAW
0 )
liefipice = {triangle(0), large(0), square(1), small(1), inside(1,0),

triangle(2), inside(2,1)}
With the background knowledge B:

in(A, B) <« inside(A, B).
in(A, D) <« inside(A, C),in(C, D).

M(B U liefepict) contains in(1,0), in(2,1) and in(2,0).
Given the IC G = 0.5 :: triangle(T), square(S), in(T,S) — false $) s

uuuuuuuuuu

There are two different instantiations for the IC C; — four possible worlds
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Probabilistic Constraint Logic Theories

Running Example: Bongard Problems

0 EE 3 0
1 4 1o A 3
o) 6v| pwV
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Four possible worlds {0, {Ci1}, {Ci2}, {Ci1, Gi2}}
o for the first two of them M(B U I)) = w;
o P(®|lefepict) = P(w1) + P(w2) = 0.25 + 0.25 = 0.5

In the central picture there are four different instantiations for C; — 16
worlds
® lcentrpict 1s verified in all of them (constraint is never violated)
° P(@“centrpict) =1.
The right picture has 8 different instantiations for IC C; — 256 worlds
® lrightpict is verified in only 32 of them
® P(@'lr,‘ghtp,‘ct) = 0125
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A Problem that Must Be Solved

Computing P(®|/) as seen before is impractical

The number of worlds is exponential in the number of instantiations
of the ICs

A possible solution:
e we can associate a Boolean random variable Xj; to each instantiated
constraint Cj
e if Cj is included in the world Xj; takes on value 1
« P(X) = P(C;) = p
* P(Xj) =1—-P(Cj) =1—-pi

Alberti, M. et al. (UNIFE) PCLT August 30, 2016 16 / 28



Inference with PCLTs

e A valuation v is an assignment of a truth value to all variables in X.
e One to one correspondence between worlds and valuations
e v can be represented as a set containing Xj; (Cj is included in the
world) or Xj; (Cjj is not included in the world) for each Xj;
J m i
e v corresponds with ¢, = A", /\X,-jeu Xij /\XT-GV Xij

Piov)=1] I »i TI (@ - i) = P(w)

i=1Cjew  Cj¢gw
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Inference with PCLTs

Suppose a ground IC Cj; is violated in /

e The worlds where Xj; holds in the respective valuation are excluded
from the summation of previous slide

o We must keep only the worlds where Xj; holds in the respective
valuation for all ground constraints Cj; violated in /.

| satisfies all the worlds where the formula

N
BUI)

¢:

>

is true in the respective valuations

m

P(oll) = P(¢) =] —p)"

i=1

where n; is the number of instantiations of C; that are not satisfied ir@pfﬁr.&‘ i
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Inference with PCLTs

Running Example: Bongard Problems

5
ANE
0

0

1o
6v

N
N Y

il

C1 = 0.5 :: triangle(T), square(S), in(T,S) — false
e In the left picture the body of (7 is true for the single substitution
T/2 and S/1 thus n; =1 and P(®|/jefepict) = 0.5.

e In the central picture the body of (7 is always false, thus n; = 0 and

P(@llcentrpict) =1.

e In the right picture the body of Cj is true for three couples (triangle,
square) thus ny = 3 and P(®|/righepict) = 0.125.
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Independence Assumption: an Example

PCLT can model any conditional probabilistic relationship between the

class variable and the ground atoms.

Suppose you want to model a general conditional dependence between the
class atom and a Herbrand base containing two atoms: a and b.

This dependence can be represented as

ONO —

a b — +
0 0 1-p1 P1
0 1 1-p P2
1 0 1-p3 P3
1 1 l—py | pa

where the conditional probability table has four parameters, ps,...

is the most general.
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Independence Assumption: an Example

This model can be represented with the following PCLT

CG=1—p1 = -a,—~b— false
CG=1—py = -a b— false
CG=1—p3 :: a,—b— false
C=1—ps = ab— false

For example, the probability that the class variable assumes value + given
that a and b are false is

P(C = +[ma,~b) = 1~ (1 p1) = pr

given interpretation {} (only constraint C; is violated)
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Properties

Independence Assumption: an Example

The Bayesian network above is equivalent to

e Boolean variable X; represents whether constraint C; is included in
the world *:@:i‘

e Boolean variable Y; whether constraint C; is violated
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Independence Assumption: an Example

e The conditional probability tables for nodes X;s are
P//(X,' = 1) =1- Pi

e those for nodes Y;s encode the deterministic functions

Y1 = XgA—-aA-b
Yo = XoA—-aAb
Y5 = XgAaA-b

Yo = XgNaAb
e that for C encodes the deterministic function

C=-YTIAYoAN-Y3AY,

where C is interpreted as a Boolean variable with 1 correspondin%’cg
+ and 0 to - 2
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Independence Assumption: an Example

It is possible to show that the probability distribution of this BN coincides
with P for all the possible interpretations.

X variables are mutually unconditionally independent, showing that it is
possible to represent any conditional dependence of C from the Herbrand
base by using only independent random variables.
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PCLT and Markov Logic Networks

e Similarly to MLNs, PCLTs encode constraints on the possible
interpretations and the probability of an interpretation depends on the
number of violated constraints

e MLNs encode the joint distribution of the ground atoms and the
class, differently we concentrate on the conditional distribution of the
class given the ground atoms

e Given a PCLT, it is possible to obtain an equivalent MLN with an
equivalent probability distribution
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Conclusions

Conclusions and Future Work

e Conclusions

e We have proposed a probabilistic extension of constraint logic theories.
e Under this extension the computation of the probability of an

interpretation being positive is logarithmic in the number of falsified
constraints.

e Future Work

e The development of a system for learning such probabilistic integrity
constraint

e We will exploit Limited-memory BFGS for tuning the parameters and
constraint refinements for finding good structures
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References |

De Raedt, L., Kimmig, A, and Toivonen, H. (2007).

ProbLog: A probabilistic Prolog and its application in link discovery.

volume 7, pages 2462-2467, Palo Alto, California USA.

Riguzzi, F. and Swift, T. (2011).

The PITA system: Tabling and answer subsumption for reasoning under uncertainty.
11(4-5):433-449.

Riguzzi, F. and Swift, T. (2013).

Well-definedness and efficient inference for probabilistic logic programming under the distribution semantics.
13(Special Issue 02 - 25th Annual GULP Conference):279-302.

4

UNivERsITA
[ BT,
B vHRRARY

Alberti, M. et al. (UNIFE) PCLT August 30, 2016 28 /28



	Introduction
	Constraint Logic Theories
	Probabilistic Constraint Logic Theories
	Inference with PCLTs
	Properties
	Conclusions

