The Structure and Complexity of Credal Semantics

Fabio G. Cozman, Denis D. Maua
Universidade de S3o Paulo

September 13, 2016



Overview

Credal semantics: definition.
The structure of credal semantics.

Inference and query complexity.



Probabilistic logic programs

m A probabilistic logic program is a pair (P,PF) where
m P is a normal logic program (no functions) and
m PF is a set of probabilistic facts.

m Predicate r, atom r(ty,...,tx), rule
Api— Ag,...,Ap,not Api1,...,not Ap,.

Ao is the head, the right hand side is the body.
A rule without a body is a fact.
A program without not is definite.

Atom without logical variables is a ground atom.

A program without logical variables is propositional.



Probabilistic facts

m A probabilistic fact is a fact associated with a probability:
P(A) = a.

m Probabilistic facts are assumed independent.



Example: the Bayesian network Asia

m Predicates smoking, cancer, and bronchitis.

m Probabilistic logic program (ProbLog notation):

0.5 :: smoking.
cancer :— smoking, al.
cancer :— not smoking, a2.
bronchitis :— smoking, a3.
bronchitis :— not smoking, a4. [Cancer} [Bronchitis}
0.1:: al. 0.01 :: a2.

S N
0.6 :: a3. 0.3 :: a4.




Acyclic programs (acyclic dependency graphs)

m For each total choice of probabilistic facts, we have an acyclic
logic program (with the usual semantics).

m Hence the semantics of an acyclic probabilistic logic program is
a single distribution — a Bayesian network (Poole (1993)).



Stratified programs:

m ... the grounded dependency graph has no cycle containing a
negative edge.

m Example:

path(X, Y) :— edge(X, Y).
path(X, Y) :— edge(X, Y), path(X, Y).

0.6 :: edge(1,2). 0.1 :: edge(1,3).

0.4 :: edge(2,5). 0.3:: edge(2,6).

0.3 :: edge(3,4). 0.8 :: edge(4,5).
0.2 :: edge(5,6).



A random graph

path(X, Y) :— edge(X, Y).
path(X, Y) :— edge(X, Y), path(X, Y).

0 6 edge(1,2). 0.1 :: edge(1,3).

:r edge(2,5). 0.3 :: edge(2,6).

O 3 edge(3 4) 0.8 :: edge(4,5).
.- edge(5, 6).



Semantics of stratified probabilistic logic programs

m For each total choice of probabilistic facts, we have a stratified
logic program.

m Hence the semantics of a stratified probabilistic logic program
is a single distribution (with the usual semantics).



A word on semantics

m The semantics of acyclic and stratified programs is
uncontroversial: just take the unique
stable model (= answer set = well-founded model).

m To recap:

m Consider logic program P.

m For some interpretation Z, take the reduct PZ:
m Ground P.
m Remove rules with subgoal not A and A € 7.
m Remove subgoals not A from remaining rules.

m Interpretation Z is stable model if Z is

the minimal model of PZ.



Non-stratified program (cycle with negative edge)

m Non-stratified program may have more than one stable model.

The Dilbert example

single(X) :— man(X), not husband(X).
husband(X) :— man(X), not single(X).
0.9 :: man(dilbert).

m man(dilbert) is false: a unique stable model s;.

m man(dilbert) is true: there are two stable models,
sp = {husband(dilbert) = true, single(dilbert) = false},
and

s3 = {husband(dilbert) = false, single(dilbert) = true}.



What could be the semantics of a non-stratified program?

m Probabilities over well-founded models:

m Sato, Kameya and Zhou (2005),
m Hadjichristodolou and Warren (2012).
m Riguzzi (2015).

m Proposal by Lukasiewicz (2005):
informally, take the set of every possible probability
distributions that satisfy the rules and (probabilistic) facts.



An example

single(X) :— man(X), not husband(X).
husband(X) :— man(X), not single(X).
0.9 :: man(dilbert).

m A probability model:
P(s;) = 0.1 and P(s2) = 0.9 hence P(s3) = 0.

m Another one: P(s;) = 0.1 and P(s3) = 0.9 hence P(sp) = 0.
m Actually, take any v € [0, 1]:

P(s;) = 0.1, B(sp) =09y, P(s3)=0.9(1— 7).



Credal semantics

m Given (P, PF):

m A probability model is a probability measure over stable models
of the program, such that all probabilistic facts are respected
and independent.

m The set of all probability models is the semantics of the
probabilistic logic program.

m Lukasiewicz calls this the “answer-set semantics’.

m More general than answer set programming.
m Different from answer set semantics (probabilities).
m We prefer credal semantics.

m Note: another recent semantics based on credal sets by
Michels et al. (2015).



An example: graph coloring

coloredBy(V/, red) :— not coloredBy(V, yellow), not coloredBy(V/, green), vertex(V).
coloredBy(V/, yellow) :— not coloredBy(V/, red), not coloredBy(V/, green), vertex( V).
coloredBy(V/, green) :— not coloredBy(V/, red), not coloredBy( V/, yellow), vertex( V).
noClash :— not noClash, edge(V/, U), coloredBy(V/, C), coloredBy(U, C).

vertex(1). vertex(2). vertex(3). vertex(4). vertex(5).
coloredBy(2,red). coloredBy(5, green).
0.5 :: edge(4,5).
edge(1,3). edge(1,4). edge(2,1). edge(2,4). edge(3,5). edge(4,3).
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m P(coloredBy(1, yellow)) = 0 and
PP(coloredBy(1, yellow)) = 1/2.
1/2 and

PP(coloredBy(4, yellow

1
P(coloredBy(3, yellow)) = 1.
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m P(coloredBy(4, yellow))
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m P(coloredBy(3, yellow



In the paper: yet another example...

wins(X) :— move(X, Y), not wins(Y).

move(a,b). move(b,a). move(b,c). 0.3 :: move(c,d).

OO—@ @

m move(c, d) is false: unique stable model (where wins(b) is the
only winning position);
m otherwise, there are two stable models
m (wins(c) is true in both of them;
m wins(a) is true in one,
m wins(b) is true in the other).
m P(wins(a)) = 0.0 and P(wins(a)) = 0.3;
P(wins(b)) = 0.7 and P(wins(b)) = 1.0;
P(wins(c)) = 0.3 and P(wins(c)) = 0.3.



A final example

m If the barber shaves every villager who does not shave himself,
does the barber shave himself?

m The program

shaves(X, Y') :— barber(X), villager(Y), not shaves(Y, Y).
0.5 :: barber(bob). 0.5 :: villager(bob).

does not have a stable model.



The structure of credal semantics

Theorem

Given a consistent probabilistic logic program, its credal semantics
is a set of probability measures that dominate an infinitely
monotone Choquet capacity.

m Infinitely monotone Choquet capacity:
belief function, random set...
m Properties:
B P(Q)=1-P0) =1,
m for any Ay, ..., A, in the algebra,
P(UIA) > X jc 1y (1)HIB(NjesA)).



Some consequences...

m Credal semantics is a closed and convex set of probability
measures.

m We have:




Inferences

m Inference: computing P(Q) for a set of truth assignments Q.

m An algorithm (Cali et al. (2008)):

e Given a plp (P,PF) and Q, initialize a and b with 0.
e For each total choice 6 of probabilistic facts, compute the set
S of all stable models of P U PF*?, and:
if Q is true in every stable model in S, then a < a+ P(C);
if Q is true in some stable model of S, then b« b+ P(C).
e Return a and b (the value of a is P(Q), the value of b is
P(Q)).



The complexity of inference

Theorem (assume programs are consistent):

Inferential complexity is #NP-equivalent for propositional prob.
programs, and #P-equivalent when restricted to stratified
propositional prob. programs.

For prob. programs where all predicates have a bound on arity,
inferential complexity is #NPNP-equivalent, and #NP-equivalent
when restricted to stratified programs.

(Counting class #C: class of problems solved by a nondeterministic
counting polynomial-time Turing machine with oracle C.)



Query complexity

m Query complexity: the complexity of computing P(Q) when
the input is Q, and the program is fixed.

Theorem (assume programs are consistent):

Query complexity is #£P-hard and in #NP; when restricted to
stratified programs, it is #P-equivalent.



A summary

| | Inferential | Query |

Acyclic propositional #P —

Acyclic relational (arity-bounded) #NP #P

Stratified propositional #P —

Stratified relational (arity-bounded) #NP #P

Non-stratified propositional #NP —
Non-stratified relational (arity-bounded) #NPNP




A word on consistency

Theorem

Consistency checking is in coNPNP for propositional and in

NP
coNPNP™ for prob. programs where predicates have a bound on
arity.



Moving to answer set programming

m Classic negation (—A), constraints (:— ¢), disjunctive heads:

coloredBy(V/, red) V coloredBy(V, yellow) V coloredBy(V/, green) :— vertex( V).
:— edge(V, U), coloredBy(V, C), coloredBy(U, C).

Result:

the credal semantics (the set of measures over stable models) of
these probabilistic answer set programs is again an infinite
monotone credal set.



Conclusion

m Credal semantics is a rather sensible semantics.

m Structure of credal semantics: nicely, infinite monotone
Choquet capacities.

m Complexity: partially mapped, still some open questions.



