
The Structure and Complexity of Credal Semantics

Fabio G. Cozman, Denis D. Mauá
Universidade de São Paulo

September 13, 2016

Overview

1 Credal semantics: definition.
2 The structure of credal semantics.
3 Inference and query complexity.

Probabilistic logic programs

A probabilistic logic program is a pair 〈P,PF〉 where
P is a normal logic program (no functions) and
PF is a set of probabilistic facts.

Predicate r, atom r(t1, . . . , tk), rule

A0 :− A1, . . . ,Am,not Am+1, . . . ,not An.

A0 is the head, the right hand side is the body.
A rule without a body is a fact.
A program without not is definite.
Atom without logical variables is a ground atom.
A program without logical variables is propositional.

Probabilistic facts

A probabilistic fact is a fact associated with a probability:

P(A) = α.

Probabilistic facts are assumed independent.

Example: the Bayesian network Asia

Predicates smoking, cancer, and bronchitis.
Probabilistic logic program (ProbLog notation):

0.5 :: smoking.
cancer :− smoking, a1.

cancer :− not smoking, a2.
bronchitis :− smoking, a3.

bronchitis :− not smoking, a4.
0.1 :: a1. 0.01 :: a2.
0.6 :: a3. 0.3 :: a4.

Smoking

Cancer Bronchitis

a1 a2 a3 a4

Acyclic programs (acyclic dependency graphs)

For each total choice of probabilistic facts, we have an acyclic
logic program (with the usual semantics).

Hence the semantics of an acyclic probabilistic logic program is
a single distribution — a Bayesian network (Poole (1993)).

Stratified programs:

... the grounded dependency graph has no cycle containing a
negative edge.

Example:

path(X ,Y) :− edge(X ,Y).
path(X ,Y) :− edge(X ,Y), path(X ,Y).

0.6 :: edge(1, 2). 0.1 :: edge(1, 3).
0.4 :: edge(2, 5). 0.3 :: edge(2, 6).
0.3 :: edge(3, 4). 0.8 :: edge(4, 5).

0.2 :: edge(5, 6).

A random graph

path(X ,Y) :− edge(X ,Y).
path(X ,Y) :− edge(X ,Y), path(X ,Y).

0.6 :: edge(1, 2). 0.1 :: edge(1, 3).
0.4 :: edge(2, 5). 0.3 :: edge(2, 6).
0.3 :: edge(3, 4). 0.8 :: edge(4, 5).

0.2 :: edge(5, 6).

1

2 3

45

6

0.6 0.1

0.4

0.3

0.3

0.8

0.2

Semantics of stratified probabilistic logic programs

For each total choice of probabilistic facts, we have a stratified
logic program.

Hence the semantics of a stratified probabilistic logic program
is a single distribution (with the usual semantics).

A word on semantics

The semantics of acyclic and stratified programs is
uncontroversial: just take the unique
stable model (= answer set = well-founded model).

To recap:
Consider logic program P.
For some interpretation I, take the reduct PI :

Ground P.
Remove rules with subgoal not A and A ∈ I.
Remove subgoals not A from remaining rules.

Interpretation I is stable model if I is
the minimal model of PI .

Non-stratified program (cycle with negative edge)

Non-stratified program may have more than one stable model.

The Dilbert example

single(X) :− man(X),not husband(X).

husband(X) :− man(X),not single(X).

0.9 :: man(dilbert).

man(dilbert) is false: a unique stable model s1.
man(dilbert) is true: there are two stable models,

s2 = {husband(dilbert) = true, single(dilbert) = false},

and

s3 = {husband(dilbert) = false, single(dilbert) = true}.

What could be the semantics of a non-stratified program?

Probabilities over well-founded models:
Sato, Kameya and Zhou (2005),
Hadjichristodolou and Warren (2012).
Riguzzi (2015).

Proposal by Lukasiewicz (2005):
informally, take the set of every possible probability
distributions that satisfy the rules and (probabilistic) facts.

An example

The Dilbert example

single(X) :− man(X),not husband(X).

husband(X) :− man(X),not single(X).

0.9 :: man(dilbert).

A probability model:
P(s1) = 0.1 and P(s2) = 0.9 hence P(s3) = 0.
Another one: P(s1) = 0.1 and P(s3) = 0.9 hence P(s2) = 0.
Actually, take any γ ∈ [0, 1]:

P(s1) = 0.1, P(s2) = 0.9γ, P(s3) = 0.9(1− γ).

Credal semantics

Given 〈P,PF〉:
A probability model is a probability measure over stable models
of the program, such that all probabilistic facts are respected
and independent.
The set of all probability models is the semantics of the
probabilistic logic program.

Lukasiewicz calls this the “answer-set semantics”.
More general than answer set programming.
Different from answer set semantics (probabilities).
We prefer credal semantics.

Note: another recent semantics based on credal sets by
Michels et al. (2015).

An example: graph coloring

coloredBy(V , red) :− not coloredBy(V , yellow),not coloredBy(V , green), vertex(V).
coloredBy(V , yellow) :− not coloredBy(V , red),not coloredBy(V , green), vertex(V).
coloredBy(V , green) :− not coloredBy(V , red),not coloredBy(V , yellow), vertex(V).
noClash :− not noClash, edge(V ,U), coloredBy(V ,C), coloredBy(U,C).

vertex(1). vertex(2). vertex(3). vertex(4). vertex(5).
coloredBy(2, red). coloredBy(5, green).

0.5 :: edge(4, 5).
edge(1, 3). edge(1, 4). edge(2, 1). edge(2, 4). edge(3, 5). edge(4, 3).

1

2

3

4

5

Inferences

1

2

3

4

5 1

2

3

4

5

1

2

3

4

5 1

2

3

4

5

P(coloredBy(1, yellow)) = 0 and
P(coloredBy(1, yellow)) = 1/2.
P(coloredBy(4, yellow)) = 1/2 and
P(coloredBy(4, yellow)) = 1.
P(coloredBy(3, yellow)) = P(coloredBy(3, yellow)) = 1.

In the paper: yet another example...

wins(X) :− move(X ,Y),not wins(Y).

move(a, b). move(b, a). move(b, c). 0.3 :: move(c, d).

a b c d

move(c, d) is false: unique stable model (where wins(b) is the
only winning position);
otherwise, there are two stable models

(wins(c) is true in both of them;
wins(a) is true in one,
wins(b) is true in the other).

P(wins(a)) = 0.0 and P(wins(a)) = 0.3;
P(wins(b)) = 0.7 and P(wins(b)) = 1.0;
P(wins(c)) = 0.3 and P(wins(c)) = 0.3.

A final example

If the barber shaves every villager who does not shave himself,
does the barber shave himself?

The program

shaves(X ,Y) :− barber(X), villager(Y),not shaves(Y ,Y).
0.5 :: barber(bob). 0.5 :: villager(bob).

does not have a stable model.

The structure of credal semantics

Theorem

Given a consistent probabilistic logic program, its credal semantics
is a set of probability measures that dominate an infinitely
monotone Choquet capacity.

Infinitely monotone Choquet capacity:
belief function, random set...
Properties:

P(Ω) = 1− P(∅) = 1;
for any A1, . . . ,An in the algebra,
P(∪iAi) ≥

∑
J⊆{1,...,n}(−1)|J|+1P(∩j∈JAj).

Some consequences...

Credal semantics is a closed and convex set of probability
measures.
We have:

P(A) =
∑

θ∈Θ:Γ(θ)⊆A

P(θ) , (cautious inference),

P(A) =
∑

θ∈Θ:Γ(θ)∩A 6=∅

P(θ) , (brave inference),

P(A|B) =
P(A ∩ B)

P(A ∩ B) + P(Ac ∩ B)
,

P(A|B) =
P(A ∩ B)

P(A ∩ B) + P(Ac ∩ B)
.

Inferences

Inference: computing P(Q) for a set of truth assignments Q.

An algorithm (Cali et al. (2008)):
• Given a plp 〈P,PF〉 and Q, initialize a and b with 0.
• For each total choice θ of probabilistic facts, compute the set

S of all stable models of P ∪ PF↓θ, and:
if Q is true in every stable model in S , then a← a + P(C);
if Q is true in some stable model of S , then b ← b + P(C).

• Return a and b (the value of a is P(Q), the value of b is
P(Q)).

The complexity of inference

Theorem (assume programs are consistent):

Inferential complexity is #NP-equivalent for propositional prob.
programs, and #P-equivalent when restricted to stratified
propositional prob. programs.

For prob. programs where all predicates have a bound on arity,
inferential complexity is #NPNP-equivalent, and #NP-equivalent
when restricted to stratified programs.

(Counting class #C: class of problems solved by a nondeterministic
counting polynomial-time Turing machine with oracle C.)

Query complexity

Query complexity: the complexity of computing P(Q) when
the input is Q, and the program is fixed.

Theorem (assume programs are consistent):

Query complexity is #P-hard and in #NP; when restricted to
stratified programs, it is #P-equivalent.

A summary

Inferential Query
Acyclic propositional #P —

Acyclic relational (arity-bounded) #NP #P
Stratified propositional #P —

Stratified relational (arity-bounded) #NP #P
Non-stratified propositional #NP —

Non-stratified relational (arity-bounded) #NPNP ∈ #NP
Non-stratified propositional WELL-FOUNDED #P —
Non-stratified relational (arity-bounded) WF #NP #P

A word on consistency

Theorem

Consistency checking is in coNPNP for propositional and in
coNPNPNP

for prob. programs where predicates have a bound on
arity.

Moving to answer set programming

Classic negation (¬A), constraints (:− φ), disjunctive heads:

coloredBy(V , red) ∨ coloredBy(V , yellow) ∨ coloredBy(V , green) :− vertex(V).
:− edge(V ,U), coloredBy(V ,C), coloredBy(U,C).

Result:

the credal semantics (the set of measures over stable models) of
these probabilistic answer set programs is again an infinite
monotone credal set.

Conclusion

Credal semantics is a rather sensible semantics.
Structure of credal semantics: nicely, infinite monotone
Choquet capacities.
Complexity: partially mapped, still some open questions.

